https://www.lydsy.com/JudgeOnline/problem.php?id=5335

小豆报名参加智力竞赛,他带上了n个好朋友作为亲友团一块来参加比赛。
比赛规则如下:
一共有m道题目,每个入都有1次答题机会,每次答题为选择一道题目回答,在回答正确后,可以从这个题目的后续题目,直达题目答错题目或者没有后续题目。每个问题都会代表一个价值,比赛最后的参赛选手获得奖励价值等价于该选手和他的亲友团没有回答的问题中的最低价值。我们现在知道小豆和他的亲友团实力非常强,能够做出这次竞赛中的所有题目。
小豆想知道在知道题目和后续题目的条件下,他最大能获得价值是多少?

原来两点可达的floyd求法是传递闭包啊……

我们floyd求出每个点之间是否可达,然后根据这个建边,之后跑一遍最小路径覆盖即可,答案为节点数-最大匹配数。

那么对答案二分,则只有两点都小于答案的点才可以连边,跑一遍即可。

#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const int M=N*N;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt;
}e[M];
int vis[N],head[N],shu[N],cnt;
int w[N],mp[N][N],d[N][N],maxn,n,m;
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
bool dfs(int u,int id){
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v]!=id){
vis[v]=id;
if(!shu[v]||dfs(shu[v],id)){
shu[v]=u;
return ;
}
}
}
return ;
}
inline void init(){
cnt=;
memset(shu,,sizeof(shu));
memset(head,,sizeof(head));
memset(vis,,sizeof(vis));
memset(d,,sizeof(d));
}
bool pan(int val){
init();
for(int i=;i<=m;i++){
for(int j=;j<=m;j++){
if(mp[i][j]&&w[i]<val&&w[j]<val)d[i][j]=;
}
}
for(int k=;k<=m;k++){
for(int i=;i<=m;i++){
if(!d[i][k])continue;
for(int j=;j<=m;j++){
d[i][j]|=d[i][k]&d[k][j];
}
}
}
int ans=;
for(int i=;i<=m;i++){
if(w[i]<val)ans++;
else continue;
for(int j=;j<=m;j++){
if(d[i][j])add(i,j);
}
}
for(int i=;i<=m;i++){
if(w[i]>=val)continue;
if(dfs(i,i))ans--;
}
return ans<=n+;
}
int main(){
n=read(),m=read();
for(int i=;i<=m;i++){
w[i]=read();int k=read();
maxn=max(maxn,w[i]);
for(int j=;j<=k;j++){
int v=read();
mp[i][v]=;
}
}
for(int k=;k<=m;k++){
for(int i=;i<=m;i++){
if(!mp[i][k])continue;
for(int j=;j<=m;j++){
if(i==j)continue;
mp[i][j]|=mp[i][k]&mp[k][j];
}
}
}
int l=,r=maxn+;
while(l<r){
int mid=(l+r+)>>;
if(pan(mid))l=mid;
else r=mid-;
}
if(l==maxn+)puts("AK");
else printf("%d\n",l);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ5335:[TJOI2018]智力竞赛——题解的更多相关文章

  1. BZOJ5335 : [TJOI2018]智力竞赛

    二分答案,转化成求最少的路径,覆盖住所有权值$\leq mid$的点. 建立二分图,若$i$的后继为$j$,则连边$i\rightarrow j$,求出最大匹配,则点数减去最大匹配数即为最少需要的路径 ...

  2. 【BZOJ5335】[TJOI2018]智力竞赛(二分图匹配)

    [BZOJ5335][TJOI2018]智力竞赛(二分图匹配) 题面 BZOJ 洛谷 题解 假装图不是一个DAG想了半天,.发现并不会做. 于是假装图是一个DAG. 那么显然就是二分答案,然后求一个最 ...

  3. [TJOI2018]智力竞赛【网络流】

    题解: 这垃圾题意 问题二分之后等价于 可重复路径判断能否覆盖一张图 1.用floyd连边(来保证可重复) 然后拆点跑最大流 然后答案=n-最大流 但这样子做本来复杂度就比较高,边数增加了n倍 2.我 ...

  4. 洛谷P4589 [TJOI2018]智力竞赛 【floyd + 二分 + KM】

    题目链接 洛谷P4589 题意可能不清,就是给出一个带权有向图,选出\(n + 1\)条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 题解 如果要问全部覆盖,就是经典的可重点的DA ...

  5. 洛谷P4589 [TJOI2018]智力竞赛(二分答案 二分图匹配)

    题意 题目链接 给出一个带权有向图,选出n + 1n+1条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 Sol TJOI怎么净出板子题 二分答案之后直接二分图匹配check一下. ...

  6. [TJOI2018]智力竞赛

    题目 发现我们需要最大化最小值,基本是二分了 那么我们二分出来一个值我们将小于等于这个值的都删去,现在的问题变成了如何用\(n+1\)条路径覆盖这张图 这不最小路径覆盖吗 于是我就忘了最小路径覆盖怎么 ...

  7. 【洛谷P4589】[TJOI2018]智力竞赛(二分+最小链覆盖)

    洛谷 题意: 给出一个\(DAG\),现在要选出\(n+1\)条可相交的链来覆盖,最终使得未被覆盖的点集中,权值最小的点的权值最大. 思路: 显然最终的答案具有单调性,故直接二分答案来判断: 直接将小 ...

  8. loj#2574. 「TJOI2018」智力竞赛 (路径覆盖)

    目录 题目链接 题解 代码 题目链接 loj#2574. 「TJOI2018」智力竞赛 题解 就是求可重路径覆盖之后最大化剩余点的最小权值 二分答案后就是一个可重复路径覆盖 处理出可达点做二分图匹配就 ...

  9. [Offer收割]编程练习赛3 - 题目3 : 智力竞赛

    智力竞赛 Problem's Link ---------------------------------------------------------------------------- Mea ...

随机推荐

  1. spl_autoload_register()函数

    一.__autoload 这是一个自动加载函数,在PHP5中,当我们实例化一个未定义的类时,就会触发此函数.看下面例子: printit.class.php <?php class PRINTI ...

  2. window上小而美的软件(推荐度按排名)

    window上小而美的软件,推荐度按排名 Notepad++ 更好用更强大的笔记本 QTranslate 本地翻译神器 7-zip 解压缩软件 Wox 程序/文件/快捷 神器 1! Everthing ...

  3. Python3 小工具-ARP扫描

    from scapy.all import * import optparse import threading import os def scan(ipt): pkt=Ether(dst='ff: ...

  4. HDU 3260/POJ 3827 Facer is learning to swim(DP+搜索)(2009 Asia Ningbo Regional)

    Description Facer is addicted to a game called "Tidy is learning to swim". But he finds it ...

  5. 【转】Hbuilder MUI 页面刷新及页面传值问题

    文章来源:http://www.111cn.net/sys/CentOS/67213.htm 一.页面刷新问题 1.父页面A跳转到子页面B,B页面修改数据后再跳回A页面,刷新A页面数据 (1).父页面 ...

  6. 《javascript模式--by Stoyan Stefanov》书摘--基本技巧

    一.基本技巧 1,变量释放的副作用 a.使用var创建的全局变量(在函数外部创建)不能删除. b.不使用var创建的隐含全局变量(尽管在函数内部创建)可以删除. // 定义三个全局变量 var glo ...

  7. .从列表结束中删除第N个节点

    描述 给定一个链表,从列表的最后删除倒数第n个元素 例如: 给定链表:1-> 2-> 3-> 4-> 5,并且n = 2. 删除倒数第二个,链表将变为1-> 2-> ...

  8. lintcode-197-排列序号

    197-排列序号 给出一个不含重复数字的排列,求这些数字的所有排列按字典序排序后该排列的编号.其中,编号从1开始. 样例 例如,排列 [1,2,4] 是第 1 个排列. 思路 参考http://www ...

  9. <Android>日期,时间选择对话框

    a)         调用Activity的onCreateDialog()方法创建对话框 b)        分别在OnDateSetListener的onDateSet()方法和OnTimeSet ...

  10. Razor语法和Razor引擎大全

    一.Razor语法 1.Razor的标识符 解释:@字符被定义为Razor服务器代码块的标识符,后面的表示是服务器代码了.web form中使用<%%>中写服务器代码一个道理.在vs工具里 ...