POJ2891:Strange Way to Express Integers——题解
http://poj.org/problem?id=2891
题目大意:
k个不同的正整数a1,a2,...,ak。对于一些非负m,满足除以每个ai(1≤i≤k)得到余数ri。求出最小的m。
输入和输出中的所有整数都是非负数,可以用64位整数类型表示。
——————————————
首先我们打眼一看可能是孙子定理。
但是我们无法保证a一定互质。
那么显然就要用我们的可爱的exgcd啦!
(下面题解根据这位大佬所懂http://blog.csdn.net/zmh964685331/article/details/50527894)
显然对于x=r(mod a)
我们有:
x+y1a1=r1①
x-y2a2=r2②
x-y3a3=r3③
……
①②相减得:
y1a1+y2a2=r1-r2
我们就有了标准的exgcd的方程了。
不能解就是-1
否则我们能求出其中一个y1,将其化为最小值后,带入①得到
x0=r1-y1a1
这是x的其中一个解,全解为
x=x0+k*lcm(a1,a2)
即
x=x0(mod lcm(a1,a2))
则:
x+y3*lcm(a1,a2)=x0④
③④再联立,重复以上过程即可。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cctype>
using namespace std;
typedef long long ll;
inline ll read(){
ll X=,w=; char ch=;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b==){
x=;y=;
return a;
}
ll r=exgcd(b,a%b,x,y);
ll temp;
temp=x;
x=y;
y=temp-(a/b)*y;
return r;
}
ll a[],r[];
int main(){
int k;
while(scanf("%d",&k)!=EOF){
bool ok=;
for(int i=;i<=k;i++){
a[i]=read();
r[i]=read();
}
ll a1=a[],r1=r[];
for(int i=;i<=k;i++){
ll A=a1,B=a[i],C=r1-r[i];
ll x,y;
ll g=exgcd(A,B,x,y);
if(C%g){
printf("-1\n");
ok=;
break;
}
x=C/g*x%a[i];
r1=r1-x*a1;
a1=a1*a[i]/g;
}
if(ok)continue;
printf("%lld\n",(r1%a1+a1)%a1);
}
return ;
}
POJ2891:Strange Way to Express Integers——题解的更多相关文章
- 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)
0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...
- POJ2891——Strange Way to Express Integers(模线性方程组)
Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...
- POJ2891 Strange Way to Express Integers
题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...
- POJ2891 Strange Way to Express Integers 扩展欧几里德 中国剩余定理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2891 题意概括 给出k个同余方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x, ...
- POJ2891 - Strange Way to Express Integers(模线性方程组)
题目大意 求最小整数x,满足x≡a[i](mod m[i])(没有保证所有m[i]两两互质) 题解 中国剩余定理显然不行....只能用方程组两两合并的方法求出最终的解,刘汝佳黑书P230有讲~~具体证 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- POJ2891 Strange Way to Express Integers [中国剩余定理]
不互质情况的模板题 注意多组数据不要一发现不合法就退出 #include <iostream> #include <cstdio> #include <cstring&g ...
- POJ2891 Strange Way to Express Integers【扩展中国剩余定理】
题目大意 就是模板...没啥好说的 思路 因为模数不互质,所以直接中国剩余定理肯定是不对的 然后就考虑怎么合并两个同余方程 \(ans = a_1 + x_1 * m_1 = a_2 + x_2 * ...
- [poj2891]Strange Way to Express Integers(扩展中国剩余定理)
题意:求解一般模线性同余方程组 解题关键:扩展中国剩余定理求解.两两求解. $\left\{ {\begin{array}{*{20}{l}}{x = {r_1}\,\bmod \,{m_1}}\\{ ...
随机推荐
- Qt-QML-Button-ButtonStyle-实现鼠标滑过点击效果
上次实现的自定义的Button功能是用的自定义的Rectangle来实现的,在慢慢的接触了QML之后,发现QML有自己定义的Button 这里盗版贴上Qt帮助文档中的部分关于Button的属性内容 B ...
- 接口测试工具postman(六)添加变量(参数化)
1.添加全局变量并引用 2.通过设置请求前置配置变量 3.在Tests里面,把响应数据设置为变量 4.添加外部文件,引用外部文件中的变量和数据,此种场景就可以执行多次请求 1)配置文件,txt或者cs ...
- 【selenium】selenium全分享
第一节:selenium基础 [http://note.youdao.com/noteshare?id=43603fb53593bfc15c28bc358a3fa6ec] 目录: selenium简介 ...
- Linux命令应用大词典-第7章 字符串、文件和命令查找
7.1 grep:字符串.文件和命令的查找 7.2 egrep:在文件或标准输入中查找模式 7.3 fgrep:在每个文件或是标准输入中查找模式 7.4 find:列出文件系统内符合条件的文件 7.5 ...
- Java开发工程师(Web方向) - 04.Spring框架 - 第3章.AOP技术
第3章--AOP技术 Spring框架 - AOP概述 笔记https://my.oschina.net/hava/blog/758873Spring框架 - AOP使用 笔记https://my.o ...
- HDU - 6440(费马小定理)
链接:HDU - 6440 题意:重新定义加法和乘法,使得 (m+n)^p = m^p + n^p 成立,p是素数.,且satisfied that there exists an integer q ...
- 《Effective C++》读书笔记 条款02 尽量以const,enum,inline替换#define
Effective C++在此条款中总结出两个结论 1.对于单纯常量,最好以const对象或enum替换#define 2.对于形似函数的宏,最好改用inline函数替换#define 接下来我们进行 ...
- Python字符串所有操作函数
name = "my \tname is {name} and i am {year} old" print(name.capitalize())#首字母大写 print(name ...
- 软件工程第二周PSP
- mysql 相同表结构拷贝数据
第一种方法: 在导出表结构的时候可以勾选导出数据: 第二种方法: 表已经存在了,只需要数据即可.这个时候可以编写sql语句(暂不支持不同服务器之间的表数据复制) insert into tab_a(i ...