【刷题】UOJ #34 多项式乘法
这是一道模板题。
给你两个多项式,请输出乘起来后的多项式。
输入格式
第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数。
第二行 \(n+1\) 个整数,表示第一个多项式的 \(0\) 到 \(n\) 次项系数。
第三行 \(m+1\) 个整数,表示第二个多项式的 \(0\) 到 \(m\) 次项系数。
输出格式
一行 \(n+m+1\) 个整数,表示乘起来后的多项式的 \(0\) 到 \(n+m\) 次项系数。
样例一
input
1 2
1 2
1 2 1
output
1 4 5 2
explanation
\((1 + 2x) \cdot (1 + 2x + x^2) = 1 + 4x + 5x^2 + 2x^3\)
限制与约定
\(0 \leq n, m \leq 10^5\),保证输入中的系数大于等于 \(0\) 且小于等于 \(9\) 。
时间限制:1s
空间限制:256MB
题解
迟来的FFT,用的迭代版,更快一些
Menci的博客写得很好
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1<<21;
const db Pi=acos(-1.0);
int n1,n2,n,m,rev[MAXN],cnt;
struct Complex{
db real,imag;
inline Complex operator + (const Complex &A){
return (Complex){real+A.real,imag+A.imag};
};
inline Complex operator - (const Complex &A){
return (Complex){real-A.real,imag-A.imag};
};
inline Complex operator * (const Complex &A){
return (Complex){real*A.real-imag*A.imag,imag*A.real+real*A.imag};
};
};
Complex a[MAXN],b[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void FFT(Complex *A,int tp)
{
for(register int i=0;i<n;++i)
if(i<rev[i])std::swap(A[i],A[rev[i]]);
for(register int l=2;l<=n;l<<=1)
{
Complex wn=(Complex){cos(2*Pi/l),sin(tp*2*Pi/l)};
for(register int i=0;i<n;i+=l)
{
Complex w=(Complex){1,0};
for(register int j=0;j<(l>>1);++j)
{
Complex A1=A[i+j],A2=A[i+j+(l>>1)]*w;
A[i+j]=A1+A2;A[i+j+(l>>1)]=A1-A2;
w=w*wn;
}
}
}
}
int main()
{
read(n1);read(n2);
n1++;n2++;m=n1+n2-1;
for(register int i=0;i<n1;++i)scanf("%lf",&a[i].real);
for(register int i=0;i<n2;++i)scanf("%lf",&b[i].real);
for(n=1;n<m;n<<=1)++cnt;
for(register int i=0;i<n;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(cnt-1));
FFT(a,1);FFT(b,1);
for(register int i=0;i<=n;++i)a[i]=a[i]*b[i];
FFT(a,-1);
for(register int i=0;i<m;++i)write((int)(a[i].real/n+0.5),' ');
puts("");
return 0;
}
【刷题】UOJ #34 多项式乘法的更多相关文章
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- cocos2dx - ActionManager内存泄露
ActionManager memory leak cocos2d-x3.7 都3.7了还有这样的bug,真是好难过,不过还是好开源的,谁都可以贡献一下 问题描述: 当创建一个node,并让它run一 ...
- 二、StreamAPI
一.Stream是什么? 是数据通道,用于操作数据源(集合.数组等)所生成的元素序列.集合讲的是数据,流讲的是计算. 注意: Stream不会存储元素. Stream不会改变源对象.相反,他们会返回一 ...
- InnoDB意向锁和插入意向锁
Preface Last night one buddy in tech wechat group asked "what's intention locks of Inno ...
- Error -26377: No match found for the requested parameter
Error -26377: No match found for the requested parameter
- Oracle-数据库增删改查基本操作
一.创建数据表 1).创建不存在的新表: create table tname( Data_Name Date_Type [default][默认值] );2).创建已存在表的副本 create ...
- 基于MTCNN多任务级联卷积神经网络进行的人脸识别 世纪晟人脸检测
神经网络和深度学习目前为处理图像识别的许多问题提供了最佳解决方案,而基于MTCNN(多任务级联卷积神经网络)的人脸检测算法也解决了传统算法对环境要求高.人脸要求高.检测耗时高的弊端. 基于MTCNN多 ...
- 六: Image Viewer 离线镜像查看器
参考:http://hadoop.apache.org/docs/r2.6.3/hadoop-project-dist/hadoop-hdfs/HdfsImageViewer.html 离线镜像查 ...
- 官方文档 恢复备份指南一 Introduction to Backup and Recovery
1.备份分为:物理备份和逻辑备份 物理备份:备份数据文件 控制文件 归档日志文件 逻辑备份:EXP EXPDP备份等 物理备份为主,逻辑做补充 2.错误的类型 ...
- cookie,localstorge,sessionstorge三者总结
相同点:都是客户端存储东西的: 不同: 1大小,cookie最小;locastorge最大 2 cookie设置好会在header头里面自动带的:但是ls和ss不会:ls同个浏览下不同网页(非跨域)都 ...
- psp1111
1 本周psp 2.本周进度条 3.本周累积进度图 代码累积折线图 博文字数累积折线图 4.本周PSP饼状图