[SOJ #48]集合对称差卷积
题目大意:给你两个多项式$A,B$,求多项式$C$使得:
$$
C_n=\sum\limits_{x\oplus y=n}A_xB_y
$$
题解:$FWT$
卡点:无
C++ Code:
#include <cstdio>
#include <cctype>
namespace __IO {
int ch;
inline int read() {
while (isspace(ch = getchar())) ;
return ch & 15;
}
}
using __IO::read; #define maxn 2097152 int lim;
inline void init(const int n) {
lim = 1; while (lim < n) lim <<= 1;
}
inline void FWT(long long *A, const int op = 1) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) {
const long long X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
if (!op) for (long long *i = A; i != A + lim; ++i) *i /= lim;
} int n;
long long A[maxn], B[maxn];
int main() {
scanf("%d", &n);
for (int i = 0; i < n; ++i) A[i] = read();
for (int i = 0; i < n; ++i) B[i] = read();
init(n + n);
FWT(A), FWT(B);
for (int i = 0; i < lim; ++i) A[i] = A[i] * B[i];
FWT(A, 0);
for (int i = 0; i < n; ++i) printf("%lld ", A[i]); puts("");
return 0;
}
[SOJ #48]集合对称差卷积的更多相关文章
- [SOJ #47]集合并卷积
题目大意:给你两个多项式$A,B$,求多项式$C$使得:$$C_n=\sum\limits_{x|y=n}A_xB_y$$题解:$FWT$,他可以解决形如$C_n=\sum\limits_{x\opl ...
- 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...
- BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演
http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/5 ...
- UOJ#310.【UNR #2】黎明前的巧克力(FWT)
题意 给出 \(n\) 个数 \(\{a_1, \cdots, a_n\}\),从中选出两个互不相交的集合(不能都为空),使得第一个集合与第二个集合内的数的异或和相等,求总方案数 \(\bmod 99 ...
- FWT 学习总结
我理解的FWT是在二元运算意义下的卷积 目前比较熟练掌握的集合对称差卷积 对于子集卷积和集合并卷积掌握不是很熟练(挖坑ing) 那么就先来谈一谈集合对称差卷积吧 所谓集合对称差卷积 就是h(i)=si ...
- 一个有关FWT&FMT的东西
这篇文章在讲什么 相信大家都会FWT和FMT. 如果你不会,推荐你去看一下VFK的2015国家集训队论文. 设全集为\(U=\{1,2,\ldots,n\}\),假设我们关心的\(f_S\)中的集合\ ...
- pthon/零起点(一、集合)
pthon/零起点(一.集合) set( )集合,集合是无序的,集合是可变的,集合是可迭代的 set()强型转成集合数据类型 set()集合本身就是去掉重复的元素 集合更新操作案列: j={1,2,3 ...
- FMT 与 子集(逆)卷积
本文参考了 Dance of Faith 大佬的博客 我们定义集合并卷积 \[ h_{S} = \sum_{L \subseteq S}^{} \sum_{R \subseteq S}^{} [L \ ...
- loj #161 子集卷积
求不相交集合并卷积 sol: 集合并卷积?看我 FWT! 交一发,10 以上的全 T 了 然后经过参考别人代码认真比对后发现我代码里有这么一句话: rep(s, , MAXSTATE) rep(i, ...
随机推荐
- orm4sqlite
//-------------------------------------------------------------------------- // // Copyright (c) BUS ...
- NB-IOT使用LWM2M移动onenet基础通信套件对接之APN设置
1. 先搞懂APN是做什么的?APN指一种网络接入技术,是通过手机上网时必须配置的一个参数,它决定了手机通过哪种接入方式来访问网络.对于手机用户来说,可以访问的外部网络类型有很多,例如:Interne ...
- Entity Framework Core 选择数据表的外键
entityTypeBuilder .HasOne<GeraeteArt>() .WithMany(p => p.Geraete) .HasForeignKey(b => b. ...
- 「日常训练」More Cowbell(Codeforces Round #334 Div.2 B)
题意与分析(CodeForces 604B) 题意是这样的:\(n\)个数字,\(k\)个盒子,把\(n\)个数放入\(k\)个盒子中,每个盒子最多只能放两个数字,问盒子容量的最小值是多少(水题) 不 ...
- HTML 常见的 DOCTYPE 声明
<!DOCTYPE> 声明必须是 HTML 文档的第一行,位于 <html> 标签之前. <!DOCTYPE> 声明不是 HTML 标签:它是指示 web 浏览器关 ...
- 前后端分离.net core + vuejs + element
查找一些资料,比较了elementui以及Iview,最终还是选择了elementui搭建前后端分离框架,废话少说了,开始搭建环境: 1.基础软件环境 vue开发环境安装: ①nodejs (我安装的 ...
- Python基础 之 文件操作
文件操作 一.路径 文件绝对路径:d:\python.txt 文件相对路径:在IDEA左边的文件夹中 二.编码方式 utf-8 gbk... 三.操作方式 1.只读 r 和 rb 绝对路径的打开操作 ...
- Windows环境下使用kafka单机模式
测试运行环境 Win10 kafka_2.11-1.0.0 zookeeper-3.4.10 1.安装Zookeeper Kafka的运行依赖于Zookeeper,所以在运行Kafka之前我们需要安装 ...
- OSS文件上传及OSS与ODPS之间数据连通
场景描述 有这样一种场景,用户在自建服务器上存有一定数量级的CSV格式业务数据,某一天用户了解到阿里云的OSS服务存储性价比高(嘿嘿,颜值高),于是想将CSV数据迁移到云上OSS中,并且 ...
- NOIP2019普及级别模拟 3.30校模拟
好吧我还是第一次写这种总结类的玩意… 考场心情…hmm…我没睡醒.是的是这样的,反正题都有两三个看错了或者没看懂… 最关键的是!!我!居!然!把!Freopen!写!在!了!程!序!最!后! 然后就和 ...