SPOJ Two Paths
Description
给定一个无向图,含有一定的路。从中找出两个最长的路径(每条路径有一些相通路组成)这两个路径不能经过公共的点,求何时二路径的乘积最大。
本题给出的无向图是一棵树,每边权值为1.
原文翻译应为有n个点,n-1条边,两点之间能够相互到达。
Solution
- 直径分成两部分得到的两条路径
- 直径的一部分和另一部分里的最长链
Code
#include <vector>
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
const int N = 100005;
namespace { // 此处应该替换为Class Solution
int n, dep[N], fa[N], MxDepP;
int dis[N], cnt, d[N], ind[N];
int L[N], R[N];
std:: vector<int> e[N];
void dfs1(int u, int fath) {
dep[u] = dep[fath] + 1, fa[u] = fath;
for (auto v : e[u])
if (v != fath)
dfs1(v, u);
if (dep[u] > dep[MxDepP])
MxDepP = u;
}
void dfs2(int u, int fath) {
for (int v : e[u])
if (v != fath and not ind[v])
dfs2(v, u), dis[u] = std:: max(dis[u], dis[v] + 1);
}
int GetDiameter() {
dfs1(1, 0);
dfs1(MxDepP, 0);
int end = MxDepP;
while(end)
d[++cnt] = end, ind[end] = true, end = fa[end];
}
long long CalcAnswer() {
long long Res = 0;
for (int i = 1; i <= cnt; i += 1) {
dfs2(d[i], 0);
Res = std:: max(Res, 1ll * (dis[d[i]] - 1) * (cnt - 1));
}
int tmp = 0;
for (int i = 1; i <= cnt; i += 1)
L[i] = tmp = std:: max(tmp, i - 2 + dis[d[i - 1]]);
tmp = 0;
for (int i = cnt; i >= 1; i -= 1)
R[i] = tmp = std:: max(tmp, cnt - i + dis[d[i + 1]] - 1);
for (int i = 1; i <= n; i += 1)
Res = std:: max(Res, 1ll * L[i] * R[i - 1]);
return Res;
}
};
int main () {
scanf("%d", &n);
for (int i = 1; i < n; i += 1) {
int u, v;
scanf("%d%d", &u, &v);
e[u].push_back(v), e[v].push_back(u);
}
GetDiameter();
printf("%lld\n", CalcAnswer());
return 0;
}
SPOJ Two Paths的更多相关文章
- SPOJ TWOPATHS Two Paths
题目意思:给一棵树,找到俩个不相交的通路,使得这俩个通路的长度和乘机最大: 解法: 小哥一看呵呵 这不就是枚举点 然后求俩边的树的直径在相乘求个最大值的题么! 呵呵 这个N 有100000 当时就不玩 ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- [LeetCode] Binary Tree Paths 二叉树路径
Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...
- [LeetCode] Unique Paths II 不同的路径之二
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- [LeetCode] Unique Paths 不同的路径
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- SPOJ DQUERY D-query(主席树)
题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...
- leetcode : Binary Tree Paths
Given a binary tree, return all root-to-leaf paths. For example, given the following binary tree: 1 ...
- SPOJ GSS3 Can you answer these queries III[线段树]
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...
- UVA 10564 Paths through the Hourglass[DP 打印]
UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...
随机推荐
- POJ2549:Sumsets——题解
http://poj.org/problem?id=2549 题目大意:从集合中找到四个不相同的数,满足a+b+c=d,输出最大的d. —————————————————————————— 该式子变为 ...
- [bzoj] 3673 3674 可持久化并查集 || 可持久化数组
原题 加强版 题意: 可持久化并查集模板-- 题解: 用可持久化线段树维护一个可持久化数组,来记录每一次操作后的状态. 不能用路径压缩,但是要按置合并,使复杂度保证在O(log) #include&l ...
- BZOJ3714 [PA2014]Kuglarz 【最小生成树】
题目链接 BZOJ3714 题解 我们如果知道了所有的数,同样就知道了所有的前缀和 相反,我们如果求出了所有前缀和,就知道了所有的数,二者是等价的 对于一个区间\([l,r]\)如果我们知道了前缀和\ ...
- 将Visual Studio项目转换为Dot Net Core项目 csproj to xproj
删除csproj文件. 将 package.config 重命名为 project.json . 转换文件,将xml转换为json格式. <?xml version="1.0" ...
- hdu 1698 线段树 区间更新 区间求和
Just a Hook Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- [samba]samba设置指定用户权限
步骤: 1.在系统中添加用户 批量添加用户和密码的方法(因为samba用户要求必须在系统中存在): for name in a b c d;do useradd $name ; echo " ...
- getopt和getopt_long参数处理
1:getopt函数 getopt主要用于解析程序运行时所带的参数,原型如下: #include <unistd.h> int getopt(int argc, char * const ...
- footer点击添加active class
//footer点击添加active class var indexFooter= document.querySelectorAll('#index_footer li'); for (var i ...
- android AsyncTask介绍 AsyncTask和Handler对比
1 ) AsyncTask实现的原理,和适用的优缺点 AsyncTask,是android提供的轻量级的异步类,可以直接继承AsyncTask,在类中实现异步操作,并提供接口反馈当前异步执行的程度(可 ...
- ZOJ 3556 How Many Sets I
How Many Sets I Time Limit: 2 Seconds Memory Limit: 65536 KB Give a set S, |S| = n, then how ma ...