NumPy线性代数
NumPy - 线性代数
NumPy 包包含numpy.linalg
模块,提供线性代数所需的所有功能。 此模块中的一些重要功能如下表所述。
序号 | 函数及描述 |
---|---|
1. | dot 两个数组的点积 |
2. | vdot 两个向量的点积 |
3. | inner 两个数组的内积 |
4. | matmul 两个数组的矩阵积 |
5. | determinant 数组的行列式 |
6. | solve 求解线性矩阵方程 |
7. | inv 寻找矩阵的乘法逆矩阵 |
numpy.dot()
此函数返回两个数组的点积。 对于二维向量,其等效于矩阵乘法。 对于一维数组,它是向量的内积。 对于 N 维数组,它是a
的最后一个轴上的和与b
的倒数第二个轴的乘积。
import numpy.matlib
import numpy as np
a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
np.dot(a,b)
输出如下:
[[37 40]
[85 92]]
要注意点积计算为:
[[1*11+2*13, 1*12+2*14],[3*11+4*13, 3*12+4*14]]
numpy.vdot()
此函数返回两个向量的点积。 如果第一个参数是复数,那么它的共轭复数会用于计算。 如果参数id
是多维数组,它会被展开。
例子
import numpy as np
a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
print np.vdot(a,b)
输出如下:
130
注意:1*11 + 2*12 + 3*13 + 4*14 = 130
。
numpy.inner()
此函数返回一维数组的向量内积。 对于更高的维度,它返回最后一个轴上的和的乘积。
例子
import numpy as np
print np.inner(np.array([1,2,3]),np.array([0,1,0]))
# 等价于 1*0+2*1+3*0
输出如下:
2
例子
# 多维数组示例
import numpy as np
a = np.array([[1,2], [3,4]])
print '数组 a:'
print a
b = np.array([[11, 12], [13, 14]])
print '数组 b:'
print b
print '内积:'
print np.inner(a,b)
输出如下:
数组 a:
[[1 2]
[3 4]]
数组 b:
[[11 12]
[13 14]]
内积:
[[35 41]
[81 95]]
上面的例子中,内积计算如下:
1*11+2*12, 1*13+2*14
3*11+4*12, 3*13+4*14
numpy.matmul
numpy.matmul()
函数返回两个数组的矩阵乘积。 虽然它返回二维数组的正常乘积,但如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。
另一方面,如果任一参数是一维数组,则通过在其维度上附加 1 来将其提升为矩阵,并在乘法之后被去除。
例子
# 对于二维数组,它就是矩阵乘法
import numpy.matlib
import numpy as np
a = [[1,0],[0,1]]
b = [[4,1],[2,2]]
print np.matmul(a,b)
输出如下:
[[4 1]
[2 2]]
例子
# 二维和一维运算
import numpy.matlib
import numpy as np
a = [[1,0],[0,1]]
b = [1,2]
print np.matmul(a,b)
print np.matmul(b,a)
输出如下:
[1 2]
[1 2]
例子
# 维度大于二的数组
import numpy.matlib
import numpy as np
a = np.arange(8).reshape(2,2,2)
b = np.arange(4).reshape(2,2)
print np.matmul(a,b)
输出如下:
[[[2 3]
[6 11]]
[[10 19]
[14 27]]]
numpy.linalg.det()
行列式在线性代数中是非常有用的值。 它从方阵的对角元素计算。 对于 2×2 矩阵,它是左上和右下元素的乘积与其他两个的乘积的差。
换句话说,对于矩阵[[a,b],[c,d]]
,行列式计算为ad-bc
。 较大的方阵被认为是 2×2 矩阵的组合。
numpy.linalg.det()
函数计算输入矩阵的行列式。
例子
import numpy as np
a = np.array([[1,2], [3,4]])
print np.linalg.det(a)
输出如下:
-2.0
例子
b = np.array([[6,1,1], [4, -2, 5], [2,8,7]])
print b
print np.linalg.det(b)
print 6*(-2*7 - 5*8) - 1*(4*7 - 5*2) + 1*(4*8 - -2*2)
输出如下:
[[ 6 1 1]
[ 4 -2 5]
[ 2 8 7]]
-306.0
-306
numpy.linalg.solve()
numpy.linalg.solve()
函数给出了矩阵形式的线性方程的解。
考虑以下线性方程:
x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27
可以使用矩阵表示为:
如果矩阵成为A
、X
和B
,方程变为:
AX = B
或
X = A^(-1)B
numpy.linalg.inv()
我们使用numpy.linalg.inv()
函数来计算矩阵的逆。 矩阵的逆是这样的,如果它乘以原始矩阵,则得到单位矩阵。
例子
import numpy as np
x = np.array([[1,2],[3,4]])
y = np.linalg.inv(x)
print x
print y
print np.dot(x,y)
输出如下:
[[1 2]
[3 4]]
[[-2. 1. ]
[ 1.5 -0.5]]
[[ 1.00000000e+00 1.11022302e-16]
[ 0.00000000e+00 1.00000000e+00]]
例子
现在让我们在示例中创建一个矩阵A的逆。
import numpy as np
a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
print '数组 a:'
print a
ainv = np.linalg.inv(a)
print 'a 的逆:'
print ainv
print '矩阵 b:'
b = np.array([[6],[-4],[27]])
print b
print '计算:A^(-1)B:'
x = np.linalg.solve(a,b)
print x
# 这就是线性方向 x = 5, y = 3, z = -2 的解
输出如下:
数组 a:
[[ 1 1 1]
[ 0 2 5]
[ 2 5 -1]]
a 的逆:
[[ 1.28571429 -0.28571429 -0.14285714]
[-0.47619048 0.14285714 0.23809524]
[ 0.19047619 0.14285714 -0.0952381 ]]
矩阵 b:
[[ 6]
[-4]
[27]]
计算:A^(-1)B:
[[ 5.]
[ 3.]
[-2.]]
结果也可以使用下列函数获取
x = np.dot(ainv,b)
NumPy线性代数的更多相关文章
- 19、NumPy——线性代数
NumPy 线性代数 NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明: 函数 描述 dot 两个数组的点积,即元素对应相乘. vdot 两个向量的 ...
- Numpy 线性代数
Numpy 提供了线性代数库 linalg , 该库包含了线性代数所需的所有功能,可以看卡下面的说明: 函数 描述 dot 两个数组的点积, 即元素对应相乘 vdot 两个向量的点积 inner 两个 ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 线性代数
import numpy.matlib import numpy as np a = np.array([[1,2],[3,4]]) b = np.array([[11,12],[13,14]]) p ...
- [转]numpy线性代数基础 - Python和MATLAB矩阵处理的不同
转自:http://blog.csdn.net/pipisorry/article/details/45563695 http://blog.csdn.net/pipisorry/article/de ...
- Python Numpy线性代数操作
Python Numpy线性代数函数操作 1.使用dot计算矩阵乘法 import numpy as np from numpy import ones from __builtin__ import ...
- Numpy Study 1
Numpy 使用1 1.Numpy创建数组 import numpy as np 创建数组有以下方式: (1).arange numpy.arange([start, ]stop, [step, ]d ...
- 数据分析 大数据之路 四 numpy 2
NumPy 数学函数 NumPy 提供了标准的三角函数:sin().cos().tan(import numpy as np a = np.array([0,30,45,60,90])print (' ...
- numpy学习笔记(四)
(1)NumPy - 矩阵库 NumPy 包包含一个 Matrix库numpy.matlib.此模块的函数返回矩阵而不是返回ndarray对象. matlib.empty()返回一个新矩阵,而不初始化 ...
- NumPy教程目录
NumPy Ndarray对象 NumPy数组属性 NumPy数据类型 NumPy数组创建例程 NumPy来自现有数据的数组 NumPy来自数值范围的数组 NumPy切片和索引 NumPy - 高级索 ...
随机推荐
- 创建Json
1)生成 JSON: 方法 1.创建一个 map,通过构造方法将 map 转换成 json 对象 Map<String, Object> map = new HashMap<Stri ...
- Powershell About Active Directory Group Membership of a domain user
使用Get-User命令去寻找group membership of a domain user $((Get-ADUser Wendy -Properties *).MemberOf -split ...
- 4.php奇葩的地方,反引号``
今天我发现我从来没打过这外符号 ` 就是键盘的左上方, 1的左边不需要组合键, 直接按下即可.... 刚开始我还一直在找没找到.....百度一下.才知道
- atob, slice,bin2hex,escape
JS处理二进制数据 http://phpor.net/blog/post/1898
- Java基础 - 可变字符串 StringBuffer
StringBuffer 类是线程安全的可变字符序列,一个类似于String类的字符串缓冲区,两者本质上是一样的,但StringBuffer类的执行效率要比String类快很多.String类创建的字 ...
- 以K个为一组反转单链表,最后不足K个节点的部分也反转
package StackMin.ReverseList_offer16; public class ReverseKgroup_extend_offer16 { /** * 分组反转单链表,最后不足 ...
- java 字符串解析为json 使用org.json包的JSONObject+JSONArray
参考: https://blog.csdn.net/xingfei_work/article/details/76572550 java中四种json解析方式 JSONObject+JSONArray ...
- 《深入理解Linux内核》阅读笔记 --- Chapter 3 Processes
Process Switching 1.The set of data that must be loaded into the registers before the process resume ...
- tornado下的跨站请求伪造(防护)
跨站请求伪造(防护) 任何Web应用所面临的一个主要安全漏洞是跨站请求伪造,通常被简写为CSRF或XSRF,发音为"sea surf".这个漏洞利用了浏览器的一个允许恶意攻击者在受 ...
- .net截取字符串
string s=abcdeabcdeabcdestring[] sArray1=s.Split(new char[3]{c,d,e}) ;foreach(string i in sArray1)Co ...