【BZOJ】2705: [SDOI2012]Longge的问题
【题意】给定n,求∑gcd(i,n),(1<=i<=n),n<=2^32
【算法】数论(欧拉函数,gcd)
【题解】批量求gcd的题目常常可以反过来枚举gcd的值。
记f(g)为gcd(i,n)=g的i的个数,则有ans=∑f(g)*g,g|n。
gcd(i,n)=g即gcd(i/g,n/g)=1,f(g)转化为φ(n/g)。
所以,ans=∑g*φ(n/g),g|n。
当然,这种纯数论问题也可以用公式法直接求解。
引用自:clover_hxy
gcd分解:d|gcd(a,b)=d|a&&d|b
过程中,[d|i]表示d是否整除i。
(图片来源:clover_hxy)
解释:第一步,用公式∑d|nφ(d)=n转化出欧拉函数。第二步,分解gcd,d|gcd(i,n)=d|i&&d|n,选择枚举d|n并依次判断d|i是否成立。
第三步,交换顺序。第四步,对于每个d,1~n中能被d整除的数字个数为n/d,得到ans=φ(d)*n/d,d|n。这个公式和之前的一致。
具体实现:
1.枚举1~sqrt(n)寻找n的因数
2.枚举2~sqrt(n)寻找n的素因数,n每次除尽已枚举到的质因数,最后x>1则x是大质数。
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
ll n,ans;
ll phi(ll x){
ll num=x;
for(ll i=;i*i<=x;i++)if(x%i==){
num=num*(i-)/i;
while(x%i==)x/=i;
}
if(x>)num=num*(x-)/x;
return num;
}
int main(){
scanf("%lld",&n);
ans=;
for(ll i=;i*i<=n;i++)if(n%i==){
ans+=phi(n/i)*i;
if(i*i!=n)ans+=phi(i)*n/i;
}
printf("%lld",ans);
return ;
}
【BZOJ】2705: [SDOI2012]Longge的问题的更多相关文章
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...
- bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][S ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
- [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...
- bzoj 2705: [SDOI2012]Longge的问题——欧拉定理
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...
- [bzoj 2705][SDOI2012]Longge的问题(数学)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705 分析: 设k为n的因数 设f[k]为gcd(x,n)==k的x的个数,容易知道a ...
随机推荐
- PokeCats开发者日志(十一)
现在是PokeCats游戏开发的第六十天的上午,易版权的状态变为了待收证,但愿不久就能送到了吧.
- Jenkins系列-Jenkins邮件通知
一.安装邮件插件 由于Jenkins自带的邮件功能比较鸡肋,因此这里推荐安装专门的邮件插件,不过下面也会顺带介绍如何配置Jenkins自带的邮件功能作用. 可以通过系统管理→管理插件→可选插件,选择E ...
- java得到当前时间
SimpleDateFormat timeformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); java.util.Date ...
- ::before和::after 常见的用法
.lizi:after{ content: "I'M after"; /*插入字符串*/ content: "attr(id)"; /*插入当前元素属性*/ ...
- 【bzoj2060】[Usaco2010 Nov]Visiting Cows拜访奶牛 树形dp
题目描述 经过了几周的辛苦工作,贝茜终于迎来了一个假期.作为奶牛群中最会社交的牛,她希望去拜访N(1<=N<=50000)个朋友.这些朋友被标号为1..N.这些奶牛有一个不同寻常的交通系统 ...
- 【bzoj2591】[Usaco 2012 Feb]Nearby Cows 树形dp
题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...
- BZOJ4864 BeiJing 2017 Wc神秘物质(splay)
splay维护区间最大值.最小值.相邻两数差的绝对值的最小值即可. #include<iostream> #include<cstdio> #include<cmath& ...
- 用css制作空心箭头(上下左右各个方向均有)
平常在网页中,经常会有空心箭头,除了用图片外,可以用css来实现.基本思路是,用css绘制两个三角形,通过绝对定位让两三角形不完全重叠,例如制作向右的空心箭头,位于前面的三角形border颜色是需要的 ...
- AtCoder Regular Contest 103 题解
C-/\/\/\ #include<algorithm> #include<iostream> #include<cstdlib> #include<ioma ...
- [SOJ #48]集合对称差卷积
题目大意:给你两个多项式$A,B$,求多项式$C$使得: $$C_n=\sum\limits_{x\oplus y=n}A_xB_y$$题解:$FWT$ 卡点:无 C++ Code: #include ...