传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5909

【题解】

设$f_{x,i}$表示以$x$节点的子树中,权值为$i$的子树个数,其中$x$必选。

那么有dp方程:$f_{x,i} = \sum_{y = son[x]} f_{x,i} + \sum_{j \oplus k = i}f_{x, j}f_{y, k}$

用FWT优化转移即可,复杂度$O(nmlogm)$。

# include <stdio.h>
# include <string.h>
# include <iostream>
# include <algorithm>
// # include <bits/stdc++.h> using namespace std; typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int N = 1e3 + , H = + ;
const int mod = 1e9+; int n, L, w[N], inv2;
int f[N][H];
int ans[H];
int head[N], nxt[N + N], to[N + N], tot = ;
inline void add(int u, int v) {
++tot; nxt[tot] = head[u]; head[u] = tot; to[tot] = v;
}
inline void adde(int u, int v) {
add(u, v), add(v, u);
} inline int pwr(int a, int b) {
int ret = ;
while(b) {
if(b&) ret = 1ll * ret * a % mod;
a = 1ll * a * a % mod;
b >>= ;
}
return ret;
} int s[H], t[H];
inline void FWT(int *a, int op) {
if(op) {
for (int len = ; len <= L; len<<=) {
int m = len >> ;
for (int *p = a; p != a+L; p += len) {
for (int k=; k<m; ++k) {
int x = p[k], y = p[k+m];
p[k] = 1ll * (x+y) * inv2 % mod;
p[k+m] = 1ll * (x-y+mod) * inv2 % mod;
}
}
}
} else {
for (int len = ; len <= L; len<<=) {
int m = len >> ;
for (int *p = a; p != a+L; p += len) {
for (int k=; k<m; ++k) {
int x = p[k], y = p[k+m];
p[k] = (x+y) % mod;
p[k+m] = (x-y+mod) % mod;
}
}
}
}
} inline void FWT_combine(int *A, int *B) {
for (int i=; i<L; ++i) s[i] = A[i], t[i] = B[i];
FWT(s, ); FWT(t, );
for (int i=; i<L; ++i) s[i] = 1ll * s[i] * t[i] % mod;
FWT(s, );
for (int i=; i<L; ++i) (A[i] += s[i]) %= mod;
} inline void dfs(int x, int fa = ) {
for (int j=; j<L; ++j) f[x][j] = ;
f[x][w[x]] = ;
for (int i=head[x]; i; i=nxt[i]) {
if(to[i] == fa) continue;
dfs(to[i], x);
FWT_combine(f[x], f[to[i]]);
}
for (int j=; j<L; ++j) (ans[j] += f[x][j]) %= mod;
} inline void sol() {
tot = ;
memset(head, , sizeof head);
memset(ans, , sizeof ans);
cin >> n >> L;
for (int i=; i<=n; ++i) scanf("%d", w+i);
for (int i=, u, v; i<n; ++i) {
scanf("%d%d", &u, &v);
adde(u, v);
}
dfs();
printf("%d", ans[]);
for (int i=; i<L; ++i) printf(" %d", ans[i]);
puts("");
} int main() {
int T; cin >> T;
inv2 = pwr(, mod-);
while(T--) sol();
return ;
}

hdu5909 Tree Cutting的更多相关文章

  1. HDU5909 Tree Cutting(树形DP + FWT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T with n ve ...

  2. hdu5909 Tree Cutting 【树形dp + FWT】

    题目链接 hdu5909 题解 设\(f[i][j]\)表示以\(i\)为根的子树,\(i\)一定取,剩余节点必须联通,异或和为\(j\)的方案数 初始化\(f[i][val[i]] = 1\) 枚举 ...

  3. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  4. 【HDU 5909】 Tree Cutting (树形依赖型DP+点分治)

    Tree Cutting Problem Description Byteasar has a tree T with n vertices conveniently labeled with 1,2 ...

  5. BZOJ3391: [Usaco2004 Dec]Tree Cutting网络破坏

    3391: [Usaco2004 Dec]Tree Cutting网络破坏 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 47  Solved: 37[ ...

  6. BZOJ 3391: [Usaco2004 Dec]Tree Cutting网络破坏( dfs )

    因为是棵树 , 所以直接 dfs 就好了... ---------------------------------------------------------------------------- ...

  7. Tree Cutting

    Tree Cutting Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/131072 K (Java/Others) Prob ...

  8. 3391: [Usaco2004 Dec]Tree Cutting网络破坏

    3391: [Usaco2004 Dec]Tree Cutting网络破坏 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 76  Solved: 59[ ...

  9. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

随机推荐

  1. java实现几种简单的排序算法

    public class SimpleAri { public static void main(String[] args) { int[] t = {11, 21, 22, 1, 6, 10, 3 ...

  2. Java容器之Map接口

    Map 接口: 1. 实现 Map 接口的类是用来存储键-值(key-value)对: 2. Map 接口的实现类有 HashMap 和 TreeMap 等: 3. Map 类中存储的键-值对,通过键 ...

  3. Swift-函数的理解

    /* 函数(Function) 函数是为执行特定功能的自包含的代码块.函数需要给定一个特定标识符(名字),然后当需要的时候, 就调用此函数来执行功能. */ // 函数的定义与调用 // 定义函数时, ...

  4. 《Effective C#》快速笔记(四)- 使用框架

    .NET 是一个类库,你了解的越多,自己需要编写的代码就越少. 目录 三十.使用重写而不是事件处理函数 三十一.使用 IComparable<T> 和 IComparer<T> ...

  5. 错误 10 非静态的字段、方法或属性“Test10.Program.a”要求对象引用

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Test ...

  6. Linux和Windows文件路径

    linux系统下的文件夹路径和window下的不一样,windows下就需要写成“\\photos"因为java会把第一个"\"当成转义字符给“吃了”.但在linux下就 ...

  7. Python对字符串进行MD5加密处理

    import hashlibimport sysreload(sys)sys.setdefaultencoding('utf-8') m = hashlib.md5()m.update('123456 ...

  8. Kubernetes初探 :总体概述及使用示例

    Kubernetes是Google开源的容器集群管理系统.它构建于docker技术之上,为容器化的应用提供资源调度.部署运行.服务发现.扩容缩容等整一套功能,本质上可看作是基于容器技术的mini-Pa ...

  9. JavaScript 语句标识符,变量周期,常见的HTML事件

    语句 描述 break 用于跳出循环. catch 语句块,在 try 语句块执行出错时执行 catch 语句块. continue 跳过循环中的一个迭代. do ... while 执行一个语句块, ...

  10. 【bzoj2190】[SDOI2008]仪仗队 欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...