http://www.lydsy.com/JudgeOnline/problem.php?id=3124 (题目链接)

题意

  求树的直径以及直径的交。

Solution

  我的想法超麻烦,经供参考。。思路还是蛮简单的,就是细节实在是。。。写的我眼泪掉下来。

  首先直径很好求,2遍dfs,顺便求出点x儿子节点中的最长链f[x][0],次长链f[x][1]。

  考虑如何求直径的交。

  对于一条边(u,v),如果它是直径的交,当且仅当所有的直径都经过u,所有的直径都经过v,u的最长链+v的最长链+(u,v)=直径长度。

  所以考虑如何求出数组b[x],表示x节点是否被所有直径经过。大家可以自行脑补,我已经不知道自己是怎么AC的了。。

细节

  too much。

代码

// bzoj3124
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=200010;
struct edge {int to,next,w;}e[maxn<<1];
int head[maxn],son[maxn][2],sum[maxn][2],b[maxn],vis[maxn],cnt,n,tot,rt;
LL f[maxn][3],ans; void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],w};head[v]=cnt;
}
void dfs(int x,int fa,LL d) {
if (ans<d) ans=d,rt=x;
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa) {
dfs(e[i].to,x,d+e[i].w);
if (f[x][0]<f[e[i].to][0]+e[i].w) {
f[x][1]=f[x][0],f[x][0]=f[e[i].to][0]+e[i].w;
son[x][1]=son[x][0],son[x][0]=e[i].to;
sum[x][1]=sum[x][0],sum[x][0]=0;
}
else if (f[x][1]<f[e[i].to][0]+e[i].w) {
son[x][1]=e[i].to;f[x][1]=f[e[i].to][0]+e[i].w;
sum[x][1]=0;
}
if (f[x][0]==f[e[i].to][0]+e[i].w) sum[x][0]++;
if (f[x][1]==f[e[i].to][0]+e[i].w) sum[x][1]++;
}
}
bool Dfs(int x,int fa,LL d) {
f[x][2]=d;
int flag=1,val=b[x],count=0,p;
if (f[x][0]+f[x][1]==ans) flag=0;
val&=flag;
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa) {
b[e[i].to]=b[x];
if (e[i].to!=son[x][0] && e[i].to!=son[x][1]) b[e[i].to]=val;
else {
if (son[x][0]==e[i].to && sum[x][0]>2) b[e[i].to]=val;
if (son[x][1]==e[i].to && sum[x][1]>1+(f[x][0]==f[x][1])) b[e[i].to]=val;
}
if (f[x][son[x][0]==e[i].to]+f[x][2]==ans) b[e[i].to]=0;
int tmp=Dfs(e[i].to,x,max(f[x][son[x][0]==e[i].to],f[x][2])+e[i].w);
if (!tmp) count++,p=e[i].to;
b[x]&=tmp;flag&=tmp;
}
if (count>1)
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa && b[e[i].to]) {
b[e[i].to]=0;
Dfs(e[i].to,x,max(f[x][son[x][0]==e[i].to],f[x][2])+e[i].w);
}
if (count==1)
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa && b[e[i].to] && e[i].to!=p) {
b[e[i].to]=0;
Dfs(e[i].to,x,max(f[x][son[x][0]==e[i].to],f[x][2])+e[i].w);
}
return flag;
}
void dp(int x,int fa) {
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa) {
dp(e[i].to,x);
if (max(f[x][son[x][0]==e[i].to],f[x][2])+e[i].w+f[e[i].to][0]==ans)
if (b[e[i].to] && b[x])
tot++;
}
}
int main() {
scanf("%d",&n);
for (int u,v,w,i=1;i<n;i++) {
scanf("%d%d%d",&u,&v,&w);
link(u,v,w);
}
dfs(1,0,0);dfs(rt,0,0);
memset(f,0,sizeof(f));
memset(son,0,sizeof(son));
dfs(1,0,0);
printf("%lld\n",ans);
for (int i=1;i<=n;i++) b[i]=1;
Dfs(1,0,0);
dp(1,0);
printf("%d",tot);
return 0;
}

【bzoj3124】 Sdoi2013—直径的更多相关文章

  1. bzoj3124: [Sdoi2013]直径 树形dp two points

    题目链接 bzoj3124: [Sdoi2013]直径 题解 发现所有直径都经过的边 一定在一条直径上,并且是连续的 在一条直径上找这段区间的两个就好了 代码 #include<map> ...

  2. bzoj千题计划134:bzoj3124: [Sdoi2013]直径

    http://www.lydsy.com/JudgeOnline/problem.php?id=3124 第一问: dfs1.dfs2 dfs2中记录dis[i]表示点i距离最长链左端点的距离 第二问 ...

  3. BZOJ3124 SDOI2013直径

    本以为必有高论,结果是个思博题.随便找一条直径,最后答案肯定是这条直径上的连续一段,如果某分支长度等于直径上某端的长度这一端都要被剪掉. #include<iostream> #inclu ...

  4. [bzoj3124] [Sdoi2013]直径

    看了child学长的题解才知道怎么写TAT http://www.cnblogs.com/ctlchild/p/5160272.html 以前不知道直径都是过重心的..代码改着改着就和标程完全一样了Q ...

  5. 2018.11.05 bzoj3124: [Sdoi2013]直径(树形dp)

    传送门 一道sbsbsb树形dpdpdp 第一问直接求树的直径. 考虑第二问问的边肯定在同一条直径上均是连续的. 因此我们将直径记下来. 然后对于直径上的每一个点,dpdpdp出以这个点为根的子树中不 ...

  6. BZOJ3124 [Sdoi2013]直径 【树的直径】

    题目 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅有N-1 条边. 路径:一棵树上,任意两个节 ...

  7. BZOJ3124: [Sdoi2013]直径 (树形DP)

    题意:给一颗树 第一问求直径 第二问求有多少条边是所有直径都含有的 题解:求直径就不说了 解第二问需要自己摸索出一些性质 任意记录一条直径后 跑这条直径的每一个点  如果以这个点不经过直径能到达最远的 ...

  8. 【BZOJ3124】[Sdoi2013]直径 树形DP(不用结论)

    [BZOJ3124][Sdoi2013]直径 Description 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节 ...

  9. [洛谷P3304] [SDOI2013]直径

    洛谷题目链接:[SDOI2013]直径 题目描述 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅 ...

  10. 3124: [Sdoi2013]直径

    3124: [Sdoi2013]直径 https://www.lydsy.com/JudgeOnline/problem.php?id=3124 分析: 所有直径都经过的边,一定都是连续的一段.(画个 ...

随机推荐

  1. iOS 学习 - 18.TextField 自定义菜单事件,复制和微信分享

    菜单事件包括,剪切.拷贝.全选.分享...,此 demo 只有 copy.share 1.定义 field 继承与 UITextField - (BOOL)canPerformAction:(SEL) ...

  2. 利用Maven把项目生成jar包供其他项目使用

    每当搭建框架时,第一步就是为系统整理一个接一个的jar包.用多了就开始深思,如何把自己的项目也整成jar包,供他人使用呢? 近期一直在看徐晓斌所著:<Maven实战>.因自己学识不够,只是 ...

  3. Oracle创建表空间、用户、授权

    在创建好数据实例(数据库)好后的基础上,后续做的事情如下: ---创建表空间 create tablespace LIS2011DATA logging datafile 'd:\oracle\pro ...

  4. 【转】最牛B的编码套路

    最近,我大量阅读了Steve Yegge的文章.其中有一篇叫“Practicing Programming”(练习编程),写成于2005年,读后令我惊讶不已: 与你所相信的恰恰相反,单纯地每天埋头于工 ...

  5. 问题解决——MFC resource.h 无法添加、提交到SVN

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  6. UEFI+GPT模式下的Windows系统中分区结构和默认分区大小及硬盘整数分区研究

    内容摘要:本文主要讨论和分析在UEFI+GPT模式下的Windows系统(主要是最新的Win10X64)中默认的分区结构和默认的分区大小,硬盘整数分区.4K对齐.起始扇区.恢复分区.ESP分区.MSR ...

  7. Qt 之 入门例程 (一)

    以 “Hello Qt” 为例,介绍如何建立一个 Qt 工程 . 1  QLabel 例程 QLabel 继承自 QFrame (继承自 QWidget),主要用来显示文本和图片. 1.1  Hell ...

  8. NOIP2001 一元三次方程求解[导数+牛顿迭代法]

    题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...

  9. 第10章 Java类的三大特性之一:多态

    1.Java中的多态 多态是指对象的多种形态,主要包括这两种: 1.1引用多态 a.父类的引用可以指向本类的对象b.父类的引用可以指向子类的对象举个例子:父类Anmail,子类Dog,可以使用父类An ...

  10. [转载]彻底弄清struct和typedef struct

    struct和typedef struct 分三块来讲述: 1 首先://注意在C和C++里不同 在C中定义一个结构体类型要用typedef: typedef struct Student { int ...