ICML 2017-Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Key
Gradient Descent+TRPO+policy Gradient
训练模型的初始参数,模型在新任务上只需参数通过一个或多个用新任务的少量数据计算的梯度步骤更新后,就可以最大的性能。而不是通过大量的新任务重新学习,而是调整学习。
解决的主要问题
- 想要让系统能够快速学习,尽快适应新任务
文章内容
Introduction
人工智能需要快速学习,才更像人类的智力。之前元学习方法:学习更新功能或学习规则;本文提出的算法不会扩展学习参数的数量,也不会对模型架构施加约束(通过要求循环模型或Siamese网络)
两种理解方式:- 特征学习角度:通过梯度训练参数,其实是在构建一个广泛适用于许多任务的内部表示。如果内部表示适合许多任务,简单地微调参数(例如,主要修改前馈模型的顶层权重)可以产生良好的结果。
- 动态系统角度:本文的学习过程可以被视为最大化新任务的损失函数相对于参数的灵敏度:当灵敏度很高时,对参数的小的局部变化可以导致任务损失的大幅度改善
Model-Agnostic Meta-Learning
set-up
aim:model f(观测x到输出a的映射)
每个任务由四部分表示(由损失函数,初始观测分布,过渡分布,和episode长度)
- 训练:从任务分布中采样task,交互k次,计算task下的loss梯度,更新当前task的参数。batch tasks分别计算和更新完后,即完成了第一次梯度更新。
最后根据累计loss的梯度来更新model参数。注意:此处是根据第一次梯度更新得到的参数来计算each task的loss,从而计算第二次梯度更新。
文章中解释为:采样任务上的测试误差充当元学习过程的训练误差。即第二次梯度计算利用的loss为每个task的test error,并利用该损失进一步更新参数θ
理解:即θ'为task更新后的参数,想要测试该θ'的效果,需要测试,即在new task上用θ'的loss来作为测试误差。
注意:训练objective:使得采样tasks的累计loss的梯度minimize - 测试:从任务分布中采样新任务,在K个样本中学习后的model表现来衡量模型的性能
- 训练:从任务分布中采样task,交互k次,计算task下的loss梯度,更新当前task的参数。batch tasks分别计算和更新完后,即完成了第一次梯度更新。
MAML Algorithm
Species of MAML
分别讲述了小样本学习和强化学习。
这里主要讲述RL:
f为状态xt在each t对应的at概率分布,设置each task的loss:
注意:由于政策梯度是一种on-policy算法,在fθ适应过程中,每一个额外的梯度步骤都需要来自当前政策fθi'的新样本。
Experimental evaluation
problem:
是否能够快速学习适应新任务
是否适用于不同的领域domains
用MAML学习的模型可以通过额外的梯度更新 和/或 示例继续改进吗文章实验分别在回归、分类、RL领域进行了实验。
RL:- 在2D Navigation和Locomotion环境中进行实验,利用vanilla策略梯度(REINFORCE)进行梯度更新的计算;使用信任区域策略优化(TRPO)作为元优化器
- 为了避免TRPO三次导数,使用有限差分计算TRPO的Hessian-vector
- 对于learning和meta-learning更新,使用标准线性特征基线,在批次中每个采样任务的每个迭代中分别拟合。并且与三个基线进行比较(pretraining one policy,andomly initialized weights,oracle policy)
Discussion and Future Work
使大容量可伸缩模型(如深度神经网络)能够通过小数据集快速训练的关键因素是 重用来自过去任务的知识。
未来:进行使多任务初始化成为深度学习和强化学习的标准成分
文章方法的优缺点
- 优点
- 加速了使用神经网络策略的策略梯度强化学习的微调
- 只需最小的修改,就可以轻松地处理不同的架构和不同的问题设置,包括分类、回归和策略梯度强化学习。
- 没有引入任何学习参数,不会扩展学习参数的数量,也不会对模型架构施加约束
- 缺点
- 在MAML用于RL中,由于PG是on-policy,每次task训练需要根据更新前后的参数分别进行两次样本采样。
- 需要知道任务分布,才能进行采样。
Summary
该文章不再像之前基于RNN的meta-RL思想,按照该文章的理解,那是在给模型架构施加约束条件。然而,此次的方法不需要任何架构和参数的改变,只是调整了参数更新的方式。
通过利用采样到的每个task根据loss更新到的单个task的参数,来再次计算新参数下的task loss。最后根据累计的新参数loss总和进行model参数的更新。
我理解是最后使得model参数让每个任务的loss最小,这样就能快速适应新任务。因为任务分布内的task是相近的,即有共同特点,model参数是融合了tasks相似的特点。利用训练模型的参数,在适应新任务的时候,就可以只需要少量的梯度更新。
论文链接
版权归原作者 Lee_ing 所有
未经原作者允许不得转载本文内容,否则将视为侵权
ICML 2017-Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks的更多相关文章
- 深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning)
深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning) 2018-08-09 12:21:33 The video tutorial can ...
- 论文笔记:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks ICML 2017 Paper:https://arxiv.org/ ...
- Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks(用于深度网络快速适应的元学习)
摘要:我们提出了一种不依赖模型的元学习算法,它与任何梯度下降训练的模型兼容,适用于各种不同的学习问题,包括分类.回归和强化学习.元学习的目标是在各种学习任务上训练一个模型,这样它只需要少量的训练样本就 ...
- 深度学习材料:从感知机到深度网络A Deep Learning Tutorial: From Perceptrons to Deep Networks
In recent years, there’s been a resurgence in the field of Artificial Intelligence. It’s spread beyo ...
- (转)Paper list of Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning
Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning 2018-08-03 19:16:56 本文转自:http ...
- 什么是 Meta Learning / Learning to Learn ?
Learning to Learn Chelsea Finn Jul 18, 2017 A key aspect of intelligence is versatility – the cap ...
- The Rise of Meta Learning
The Rise of Meta Learning 2019-10-18 06:48:37 This blog is from: https://towardsdatascience.com/the- ...
- 论文笔记:Visual Question Answering as a Meta Learning Task
Visual Question Answering as a Meta Learning Task ECCV 2018 2018-09-13 19:58:08 Paper: http://openac ...
- 【MetaPruning】2019-ICCV-MetaPruning Meta Learning for Automatic Neural Network Channel Pruning-论文阅读
MetaPruning 2019-ICCV-MetaPruning Meta Learning for Automatic Neural Network Channel Pruning Zechun ...
- [转载]Meta Learning单排小教学
原文链接:Meta Learning单排小教学 虽然Meta Learning现在已经非常火了,但是还有很多小伙伴对于Meta Learning不是特别理解.考虑到我的这个AI游乐场将充斥着Meta ...
随机推荐
- 使用vite创建vue3 遇到 process is not defined
今天新建项目遇到报错,查资料得出,需要在vite.config.js中添加代码如下 import { defineConfig } from 'vite' import vue from '@vite ...
- kubernetes集成GPU原理
这里以Nvidia GPU设备如何在Kubernetes中管理调度为例研究, 工作流程分为以下两个方面: 如何在容器中使用GPU Kubernetes 如何调度GPU 容器中使用GPU 想要在容器中的 ...
- 为什么 C# 可能是最好的第一编程语言
纵观神州大地,漫游中华互联网,我看到很多人关注为什么你应该开始学习JavaScript做前端,而对blazor这样的面向未来的框架有种莫名的瞧不起,或者为什么你应该学习Python作为你的第一门编程语 ...
- 数据库相关知识点整理,助力拿到心仪的offer
1. 数据库的事务 1.1 什么是数据库事务? 事务是指一组逻辑上相关的操作,这些操作要么全部完成,要么全部不完成. 事务是数据库管理系统执行过程中的一个逻辑工作单位,是用户定义的一个操作序列,这些操 ...
- Oracle数据库 insert 插入数据 显示问号乱码的解决办法
一.问题描述 插入的中文数据 显示成问号(乱码),其他语言如老挝文.柬文等都一样. 二.解决方案 plsql插入oracle数据乱码问题处理起来其实很简单,因为乱码问题一般都是由于编码不一致导致的,我 ...
- 当后端人员未提供接口,前端人员该怎么测试 --mock
1.回顾 2.线上的mock http://rap2.taobao.org/ https://www.easy-mock.com/ 3.线上接口文档 Swagger https://swagger.i ...
- Vue 环境准备
近期接触了下前端项目,记录下学习过程. 近几年前端发展的迅猛,各种框架层出不穷,vue react angular ,各种第三方组件 原来会点js,jQuery 前后端一个人全搞定了,现在前后端分离, ...
- RDIFramework.NET代码生成器全新V5.0版本发布
RDIFramework.NET代码生成器介绍 RDIFramework.NET代码生成器,代码.文档一键生成. RDIFramework.NET代码生成器集代码生成.各数据库对象文档生成.数据库常用 ...
- C++ 基于libbfd实现二进制加载器
构建工具解析二进制文件,基于libbfd实现,提取符号和节 BFD库 文档参考: LIB BFD, the Binary File Descriptor Library BFD及Binary File ...
- Java与Mysql锁相关知识总结
锁的定义 在计算机程序中锁用于独占资源,获取到锁才可以操作对应的资源. 锁的实现 锁在计算机底层的实现,依赖于CPU提供的CAS指令(compare and swsp),对于一个内存地址,会比较原值以 ...