USACO 4.1
麦香牛块洛谷传送门,麦香牛块USACO传送门,篱笆回路洛谷传送门,篱笆回路USACO传送门
洛谷 2737 麦香牛块
分析
首先如果包装总GCD不为1,显然没有上界
然后这个答案如果存在必然满足在一个范围内,
可以推结论得到上界为\(max*(max-1)\)(好像是反证法)
然后就可以用完全背包求解啦,
但是为了推广\(\text{STL::bitset}O(\frac{n*maxlogLIMIT}{32})\)的做法
所以我就写了跑得更慢的做法T^T
代码
/*
ID:lemondi1
LANG:C++
TASK:nuggets
*/
#include <cstdio>
#include <algorithm>
#include <bitset>
#define rr register
using namespace std;
const int N=65300;
bitset<N>dp; int n,a[11],G,ans,lim;
inline signed gcd(int a,int b){return b?gcd(b,a%b):a;}
signed main(){
freopen("nuggets.in","r",stdin);
freopen("nuggets.out","w",stdout);
scanf("%d",&n);
for (rr int i=1;i<=n;++i){
scanf("%d",&a[i]);
G=gcd(G,a[i]);
}
if (G!=1) return !printf("0\n");
dp[0]=1,sort(a+1,a+1+n),lim=a[n]*(a[n]-1);
for (rr int i=1;i<=n;++i)
for (rr int j=a[i];j<=lim;j<<=1)
dp|=dp<<j;
dp[0]=0;
for (rr int i=a[n]*(a[n]-1);~i;--i)
if (!dp[i]) return !printf("%d\n",i);
}
洛谷 2738 篱笆回路
分析
显然是求最小环,数据小用\(\text{FLOYD}\)解决
但是建图是关键,考虑用哈希存下某篱笆某一边所有可连的篱笆(包括它自己)
这样就可以加点了
代码
/*
ID:lemondi1
LANG:C++
TASK:fence6
*/
#include <cstdio>
#include <cctype>
#include <algorithm>
#include <cstring>
#include <map>
#define rr register
using namespace std;
typedef unsigned uit; map<uit,int>uk;
int d[101][101],dis[101][101],n,ans,a[11];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
signed main(){
freopen("fence6.in","r",stdin);
freopen("fence6.out","w",stdout);
memset(dis,42,sizeof(dis)),
memset(d,42,sizeof(d)),ans=d[0][0];
for (rr int Test=iut();Test;--Test){
rr int Num=iut(),Len=iut(),X[2];
rr int nn[2]={iut(),iut()},Tot;
for (rr int j=0;j<2;++j){
a[Tot=1]=Num;
for (;nn[j];--nn[j])
a[++Tot]=iut();
sort(a+1,a+1+Tot);
rr uit h=a[1];
for (rr int i=2;i<=Tot;++i)
h=h*137+a[i];
if (!uk[h]) uk[h]=++n;
X[j]=uk[h];
}
dis[X[0]][X[1]]=d[X[0]][X[1]]=Len;
dis[X[1]][X[0]]=d[X[1]][X[0]]=Len;
}
for (rr int k=1;k<=n;++k){
for (rr int i=1;i<k-1;++i)
for (rr int j=i+1;j<k;++j)
ans=min(ans,dis[i][j]+d[i][k]+d[j][k]);
for (rr int i=1;i<=n;++i)
for (rr int j=1;j<=n;++j)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
return !printf("%d\n",ans);
}
USACO 4.1的更多相关文章
- USACO . Your Ride Is Here
Your Ride Is Here It is a well-known fact that behind every good comet is a UFO. These UFOs often co ...
- 【USACO 3.1】Stamps (完全背包)
题意:给你n种价值不同的邮票,最大的不超过10000元,一次最多贴k张,求1到多少都能被表示出来?n≤50,k≤200. 题解:dp[i]表示i元最少可以用几张邮票表示,那么对于价值a的邮票,可以推出 ...
- USACO翻译:USACO 2013 NOV Silver三题
USACO 2013 NOV SILVER 一.题目概览 中文题目名称 未有的奶牛 拥挤的奶牛 弹簧牛 英文题目名称 nocow crowded pogocow 可执行文件名 nocow crowde ...
- USACO翻译:USACO 2013 DEC Silver三题
USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...
- USACO翻译:USACO 2014 DEC Silver三题
USACO 2014 DEC SILVER 一.题目概览 中文题目名称 回程 马拉松 奶牛慢跑 英文题目名称 piggyback marathon cowjog 可执行文件名 piggyback ma ...
- USACO翻译:USACO 2012 FEB Silver三题
USACO 2012 FEB SILVER 一.题目概览 中文题目名称 矩形草地 奶牛IDs 搬家 英文题目名称 planting cowids relocate 可执行文件名 planting co ...
- USACO翻译:USACO 2012 JAN三题(3)
USACO 2012JAN(题目三) 一.题目概览 中文题目名称 放牧 登山 奶牛排队 英文题目名称 grazing climb lineup 可执行文件名 grazing climb lineup ...
- USACO翻译:USACO 2012 JAN三题(2)
USACO 2012 JAN(题目二) 一.题目概览 中文题目名称 叠干草 分干草 奶牛联盟 英文题目名称 stacking baleshare cowrun 可执行文件名 stacking bale ...
- USACO翻译:USACO 2012 JAN三题(1)
USACO 2012 JAN(题目一) 一.题目概览 中文题目名称 礼物 配送路线 游戏组合技 英文题目名称 gifts delivery combos 可执行文件名 gifts delivery c ...
- USACO翻译:USACO 2013 JAN三题(1)
USACO 2013 JAN 一.题目概览 中文题目名称 镜子 栅栏油漆 奶牛排队 英文题目名称 mirrors paint lineup 可执行文件名 mirrors paint lineup 输入 ...
随机推荐
- 使用 Hugging Face 微调 Gemma 模型
我们最近宣布了,来自 Google Deepmind 开放权重的语言模型 Gemma现已通过 Hugging Face 面向更广泛的开源社区开放.该模型提供了两个规模的版本:20 亿和 70 亿参数, ...
- 前后端分离解决跨域cors问题
修改windows的hosts文件 vim C:\Windows\System32\drivers\etc\hosts 添加域名 前端:www.luffycity.cn 后端:api.luffycit ...
- linux下docker安装与初始
1 docker的安装与使用初识 1 docker的安装 # step 1: 安装必要的一些系统工具 sudo yum install -y yum-utils device-mapper-persi ...
- 《HelloGitHub》第 95 期
兴趣是最好的老师,HelloGitHub 让你对编程感兴趣! 简介 HelloGitHub 分享 GitHub 上有趣.入门级的开源项目. https://github.com/521xueweiha ...
- 一文了解 NebulaGraph 上的 Spark 项目
本文首发于 Nebula Graph Community 公众号 最近我试着搭建了方便大家一键试玩的 Nebula Graph 中的 Spark 相关的项目,今天就把它们整理成文分享给大家.而且,我趟 ...
- 从源码看webpack3打包流程
在javascript刚刚流行时,前端项目通常比较简单,不需要考虑项目的开发效率.性能和扩展性等. 随着前端项目越来越复杂,需要更正式的软件开发实践,比如单元测试(unit testing).代码检查 ...
- 我和我的DBA之路
这几天,突然想写写这些年的工作总结,毕业至今快20年的回顾. 想到20年前,在做毕业设计的时候,当时是学的机械工程类专业,因为带毕业设计的老师兼职企业有个门户网站的需求,而我又会做点网站设计,带的老师 ...
- PhpStorm设置FTP功能
1.版本介绍 本文操作针对PhpStorm 2020.1版本 2.[ctrl + alt + s]打开设置,选择"Build,Execution,Deployment" 3.选择& ...
- 适用于AbpBoilerplate的RocketChat Api库
RocketChat 适用于AbpBoilerplate的RocketChat Api库 Rocket.Chat 是一个免费.开源.可扩展.高度可定制且安全的平台,可让您与团队进行交流和协作.共享文件 ...
- Navicat 通过 Http通道 连接远程 Mysql
https://jingyan.baidu.com/article/3d69c551aa54dff0cf02d7a0.html 注意本机ip填写 localhost