题意可抽象为:N个包中每个包容量是T[i],每个包都拿一些,设拿出的总数为sum时的方案数为q,求max(q)

设dp[i][j]为拿了前i个包,共拿出了j物品时的方案数。那么

for i=1 to n

  for j=0 to sum

    for k=0 to t[i]

      dp[i][j]+=dp[i-1][j-k]

但是注意这题中间过程就得取MOD,然而这题求的却是最大值取模而不是取模之后的最大值  【这俩并不一样

可以打表得知dp[N][sum{T[i]}/2]是最大值

 #include <iostream>
#include<cstring>
#define MOD 1000000007
#define LL long long
using namespace std;
int N,T;
LL sum;
int t[];
int dp[][]; int main()
{
cin>>T;
while(T--)
{
memset(dp,,sizeof(dp));
sum=; cin>>N;
for(int i=;i<=N;i++)
{
cin>>t[i];
sum+=t[i];
} //cout<<sum<<endl;
sum=sum/;
//cout<<sum<<endl; for(int i=;i<=t[];i++)
dp[][i]=; for(int i=;i<=N;i++)
for(int j=;j<=sum;j++)
for(int k=;k<=t[i];k++)
if(j>=k)
{
//cout<<i%2<<" "<<(i-1)%2<<endl;
dp[i][j]+=dp[i-][j-k]; //dp[i][j]+=dp[i-1][j-k]
dp[i][j]=dp[i][j]%MOD;
} cout<<dp[N][sum]<<endl;
} return ;
}

hdu5000 背包dp的更多相关文章

  1. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  2. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  3. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  4. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  5. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  6. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  7. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  8. G - Surf Gym - 100819S -逆向背包DP

    G - Surf Gym - 100819S 思路 :有点类似 逆向背包DP , 因为这些事件发生后是对后面的时间有影响. 所以,我们 进行逆向DP,具体 见代码实现. #include<bit ...

  9. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

随机推荐

  1. linux 学习随笔-压缩和解压缩

    .gz 由gzip压缩工具压缩的文件 .bz2 由bzip2压缩工具压缩的文件 .tar 由tar打包程序打包的文件 .tar.gz 先由tar打包,gzip压缩 .tar.bz2 先由tar打包,b ...

  2. [windows]win10家庭版切换到管理员账户

    背景:很多时候,在安装或者运行某些程序时会需要到管理员账户运行.而在win10家庭版却没有明显的位置可以让用户简单的进行切换.因此,有了以下的方法. 方法: 1.在搜索框中输入CMD,右键以管理员方式 ...

  3. ORACLE清理、截断监听日志文件(listener.log)

    在ORACLE数据库中,如果不对监听日志文件(listener.log)进行截断,那么监听日志文件(listener.log)会变得越来越大,想必不少人听说过关于"LISTENER.LOG日 ...

  4. MySQL慢查询Explain Plan分析

    Explain Plan 执行计划,包含了一个SELECT(后续版本支持UPDATE等语句)的执行 主要字段 id 编号,从1开始,执行的时候从大到小,相同编号从上到下依次执行. Select_typ ...

  5. shell生成指定范围内的随机数

    #!/bin/bash read -p "请输入起始数:" min read -p "请输入终止数:" max if [ $min -gt $max ] the ...

  6. Centos7中systemctl命令详解

    Linux Systemctl是一个系统管理守护进程.工具和库的集合,用于取代System V.service和chkconfig命令,初始进程主要负责控制systemd系统和服务管理器.通过Syst ...

  7. Android Stduio 发生 Process 'command 'somePath:java.exe'' finished with non-zero exit value 2 异常的解决办法

    有时你会发现,在你使用Android Studio 进行编译的时候提示: Error:Execution failed for task ':demo:dexDebug'.> com.andro ...

  8. silicon labs 代理商

      http://www.silabs.com/buysample/pages/contact-sales.aspx?SearchLocation=China       Silicon Labs A ...

  9. Postgresql 取随机数

    取0和1之间的随机数 SELECT RANDOM(); 取介于两数之间的随机数 SELECT random()*(b-a)+a; ); 取介于两数之间的随机整数 SELECT floor(random ...

  10. WPF文章资源库

        MUHAMMAD SHUJAAT SIDDIQI