自然语言开发AI应用,利用云雀大模型打造自己的专属AI机器人
如今,大模型层出不穷,这为自然语言处理、计算机视觉、语音识别和其他领域的人工智能任务带来了重大的突破和进展。大模型通常指那些参数量庞大、层数深、拥有巨大的计算能力和数据训练集的模型。
但不能不承认的是,普通人使用大模型还是有一定门槛的,首先大模型通常需要大量的计算资源才能进行训练和推理。这包括高性能的图形处理单元(GPU)或者专用的张量处理单元(TPU),以及大内存和高速存储器。说白了,本地没N卡,就断了玩大模型的念想吧。
其次,大模型的性能往往受到模型调优和微调的影响。这需要对模型的超参数进行调整和优化,以适应特定任务或数据集。对大模型的调优需要一定的经验和专业知识,包括对深度学习原理和技术的理解。
那么,如果不具备相关专业知识,也没有专业的设备,同时也想开发属于自己的基于AI大模型的应用怎么办?本次我们使用在线的云雀大模型来打造属于自己的AI应用。
构建线上AI应用
首先访问扣子应用的官网:
https://www.coze.cn/home
注册成功之后,我们需要一个创意,也就是说我们到底想要做一个什么应用,这个应用的功能是什么,当然,关于创意AI是帮不了你的,需要自己想,比如笔者的代码水平令人不敢恭维,平时在CodeReView时,经常被同事嘲笑,没办法,有的人就是没有代码洁癖,为了避免此种情况经常发生,想要打造一款AI机器人能够在代码提交之前帮忙审核代码,检查语法的错误并给出修改意见和性能层面优化的方案。
此时点击创建Bot:
如上图所示,这里输入应用的名称和描述,至于应用图标,可以让AI生成一个。
工作流 WorkFlow
工作流指的是支持通过可视化的方式,对插件、大语言模型、代码块等功能进行组合,从而实现复杂、稳定的业务流程编排。
我们的工作流非常简单,第一步,用户输入代码,第二步,大模型检查代码,第三步,大模型返回修改意见。
点击创建工作流,输入的参数变量为code,数据类型可以选择四种,即字符串、整形、布尔和数字,这里代码显然选择字符串。
接着接入大模型,引导词这样填写:
你是一位经验丰富的程序员,擅长Python,HTML,CSS,Java,Golang等语言,请检查{{input}}这段代码的语法,给出修改的建议,并且给出代码性能优化的多种修改方案。
通过引导词来让大模型针对输入的代码进行检测。
最后返回大模型输入的修改意见。
如图所示:
随后可以运行整个工作流进行测试,大模型返回:
{
"output": "可优化项目与建议:\n- 建议使用 `try-except` 结构来捕获所有类型的异常,然后进行统一处理。\n- 建议添加代码注释,增强代码的可读性。\n\n优化后的代码如下所示:\n```python\ndef make_tran():\n \"\"\"\n 该函数用于将 video.srt 文件中的英文翻译成中文,并将翻译结果写入 two.srt 文件\n\n Returns:\n str: \"翻译完毕\",表示翻译过程已完成\n \"\"\"\n # 从预训练模型中加载 tokenizer 和 model\n tokenizer = AutoTokenizer.from_pretrained(\"Helsinki-NLP/opus-mt-en-zh\")\n model = AutoModelForSeq2SeqLM.from_pretrained(\"Helsinki-NLP/opus-mt-en-zh\")\n # 打开 video.srt 文件并读取其中的内容\n with open(\"./video.srt\", 'r', encoding=\"utf-8\") as file:\n gweight_data = file.read()\n # 将读取到的内容按换行符分割成多个段落,并存储在 result 列表中\n result = gweight_data.split(\"\\n\\n\")\n # 如果 two.srt 文件存在,则将其删除\n if os.path.exists(\"./two.srt\"):\n os.remove(\"./two.srt\")\n # 遍历 result 列表中的每个段落\n for res in result:\n # 将每个段落按换行符分割成多个句子,并存储在 line_srt 列表中\n line_srt = res.split(\"\\n\")\n # 尝试对每个句子进行翻译\n try:\n # 使用 tokenizer 对句子进行预处理,以便模型可以处理它们\n tokenized_text = tokenizer.prepare_seq2seq_batch([line_srt[2]], return_tensors='pt')\n # 使用模型进行翻译\n translation = model.generate(**tokenized_text)\n # 使用 tokenizer 将翻译结果解码为文本\n translated_text = tokenizer.batch_decode(translation, skip_special_tokens=False)[0]\n # 移除翻译结果中的填充字符和结束符号,并去除首尾的空格\n translated_text = translated_text.replace(\"<pad>\", \"\").replace(\"</s>\", \"\").strip()\n # 打印翻译结果\n print(translated_text)\n # 将翻译结果写入 two.srt 文件\n with open(\"./two.srt\", \"a\", encoding=\"utf-8\") as f:\n f.write(f\"{line_srt[0]}\\n{line_srt[1]}\\n{line_srt[2]}\\n{translated_text}\\n\\n\")\n # 如果在翻译过程中发生任何异常,则打印异常信息,并跳过当前句子\n except Exception as e:\n print(str(e))\n # 返回 \"翻译完毕\",表示翻译过程已完成\n return \"翻译完毕\"\n```"
}
如此,就完成了一个代码检查和优化的工作流,说白了,就是给用户一个没有token限制并且无限次使用的大模型,并且跳过prompt环节,直接简单粗暴返回垂直内容的解决方案。
发布应用
构建好应用之后,我们可以在其他平台发布,让更多人使用该应用,这里以飞书为例子,飞书是一站式协同办公平台,为企业提供各种数字化办公解决方案,大部分公司都在使用。
随后在公司群里就可以直接调用自己的应用了:
结语
尽管使用大模型可能具有一些挑战,但随着技术的进步和资源的可用性,大模型的门槛正在逐渐降低。这为更多的普通人、无编程背景的爱好者提供了利用大模型来解决对于个人垂直领域相对复杂任务的机会。
自然语言开发AI应用,利用云雀大模型打造自己的专属AI机器人的更多相关文章
- 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅
摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...
- “体检医生”黑科技|让AI开发更精准,ModelArts更新模型诊断功能
摘要:华为云AI开发平台ModelArts黑科技加持AI研发,让模型开发更高效.更简单,降低AI在行业的落地门槛.全面的可视化评估以及智能诊断功能,使得开发者可以直观了解模型各方面性能,从而进行针对性 ...
- 无插件的大模型浏览器Autodesk Viewer开发培训-武汉-2014年8月28日 9:00 – 12:00
武汉附近的同学们有福了,这是全球第一次关于Autodesk viewer的教室培训. :) 你可能已经在各种场合听过或看过Autodesk最新推出的大模型浏览器,这是无需插件的浏览器模型,支持几十种数 ...
- AI大模型学习了解
# 百度文心 上线时间:2019年3月 官方介绍:https://wenxin.baidu.com/ 发布地点: 参考资料: 2600亿!全球最大中文单体模型鹏城-百度·文心发布 # 华为盘古 上线时 ...
- AI 影评家:用 Hugging Face 模型打造一个电影评分机器人
本文为社区成员 Jun Chen 为 百姓 AI 和 Hugging Face 联合举办的黑客松所撰写的教程文档,欢迎你阅读今天的第二条推送了解和参加本次黑客松活动.文内含有较多链接,我们不再一一贴出 ...
- DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世 ...
- PowerDesigner 学习:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- PowerDesigner 15学习笔记:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- Journal of Proteomics Research | 利用混合蛋白质组模型对MBR算法中错误转移鉴定率的评估
题目:Evaluating False Transfer Rates from the Match-between-Runs Algorithm with a Two-Proteome Model 期 ...
- 千亿参数开源大模型 BLOOM 背后的技术
假设你现在有了数据,也搞到了预算,一切就绪,准备开始训练一个大模型,一显身手了,"一朝看尽长安花"似乎近在眼前 -- 且慢!训练可不仅仅像这两个字的发音那么简单,看看 BLOOM ...
随机推荐
- 一、@Configuration、@Conponent 、@ComponentScan 注解等
一句话概括 区别: @Configuration 中所有带 @Bean 注解的方法都会被动态代理,因此调用该方法返回的都是同一个实例.2. 可以直接调用方法,不需要 @Autowired 注入后使用. ...
- Java 开发手册 (阿里巴巴开发手册)
Java 开发手册 (有需要pdf版本的私信我,可以邮箱发)0版本号 制定团队 更新日期 备注 1.4.0 阿里巴巴集团技术团队 2018.5.20 增加设计规约(详尽版) 一.编程规约 (一) 命名 ...
- Spring相关原理
Spring是什么? Spring是一个轻量级的IoC和AOP容器框架.常见的配置方式有三种:基于XML的配置.基于注解的配置.基于Java的配置. 模块分为以下:Spring Core:Spring ...
- 五、java操作swift对象存储(官网样例)
系列导航 一.swift对象存储环境搭建 二.swift添加存储策略 三.swift大对象--动态大对象 四.swift大对象--静态态大对象 五.java操作swift对象存储(官网样例) 六.ja ...
- 【调试】ftrace(二)新增跟踪点
内核的各个子系统已经有大量的跟踪点,如果这些跟踪点无法满足工作中的需求,可以自己手动添加跟踪点. 添加跟踪点有两种方式,一种是仿照events/目录下的跟踪点,使用TRACE_EVENT() 宏添加. ...
- 媒体查询常用 - 移动端和PC端尺寸
/* 移动端 */ @media all and (max-width: 768px) { } /* PC端 */ @media all and (min-width: 769px) { }
- Laravel : 模糊查询 where orWhere
Banner::where('title', 'like', "%{$keyword}%")->orWhere('introduce', 'like', "%{$k ...
- JMS微服务开发示例(七)使用 Serilog 作为日志提供者
nuget 引入: Serilog.Extensions.LoggingSerilog.Settings.ConfigurationSerilog.Sinks.ConsoleSerilog.Sinks ...
- SpringBoot实现限流注解
SpringBoot实现限流注解 在高并发系统中,保护系统的三种方式分别为:缓存,降级和限流. 限流的目的是通过对并发访问请求进行限速或者一个时间窗口内的的请求数量进行限速来保护系统,一旦达到限制速率 ...
- Linux-运行级别-init