Problem Statement

Given a sequence $A$ of $N$ numbers, answer the following $Q$ questions.

  • In the $i$-th question, you are given integers $L_i$ and $R_i$. Is $A_{L_i} \times A_{L_i+1} \times \dots \times A_{R_i}$ a cubic number?

Here, a positive integer $x$ is said to be a cubic number when there is a positive integer $y$ such that $x=y^3$.

Constraints

  • All values in input are integers.
  • $1 \le N,Q \le 2 \times 10^5$
  • $1 \le A_i \le 10^6$
  • $1 \le L_i \le R_i \le N$

Input

Input is given from Standard Input in the following format:

$N$ $Q$
$A_1$ $A_2$ $\dots$ $A_N$
$L_1$ $R_1$
$L_2$ $R_2$
$\vdots$
$L_Q$ $R_Q$

Output

Print $Q$ lines.

The $i$-th line should contain Yes if, in the $i$-th question, $A_{L_i} \times A_{L_i+1} \times \dots \times A_{R_i}$ is a cubic number, and No otherwise.

The checker is case-insensitive; output can be either uppercase or lowercase.


Sample Input 1

8 5
7 49 30 1 15 8 6 10
1 2
2 3
4 4
5 8
3 8

Sample Output 1

Yes
No
Yes
No
Yes
  • For the first question, $7 \times 49 = 343$ is a cubic number.
  • For the second question, $49 \times 30 = 1470$ is not a cubic number.
  • For the third question, $1$ is a cubic number.
  • For the fourth question, $15 \times 8 \times 6 \times 10 = 7200$ is not a cubic number.
  • For the fifth question, $30 \times 1 \times 15 \times 8 \times 6 \times 10 = 216000$ is a cubic number.

一个有亿种方法的题目。

什么情况下乘积为立方数?当且仅当分解后所有的素数的指数都是3的倍数。 \(A_i\le 10^6\),所以先预处理出每一种数的各种质因子。

法一:莫队

这就不用说了吧。加入时枚举每个质因子,维护有多少个质因子的指数模3余0。复杂度 \(O(n\sqrt{n}logn)\),3秒钟已经是能过得了。

法二:普通哈希

给每个质数分配一个随机权值 \(g_i\),如果前 \(i\) 个数质数 \(i\) 指数 \(p_i\) 模 3 为 \(k_i\),那么定义 \(hash(1,n)=\sum\limits_{j=1}^{10^6}g_ik_i\)。处理出前缀 \(h_i=hash(1,i)\),因为 \(h_i\) 到 \(h_{i+1}\) 会变化的就是在每个因数中加了或减去几个随机权值。若 \([l,r]\) 符合条件,那么 \(h_{l-1}=h_r\)。判断即可。

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5,P=998244353;
int n,q,a[N],l,r,pri[N],c[N],op;
long long s[N],f[N];
vector<int>g[N];
int main()
{
srand(time(0));
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)
scanf("%d",a+i);
for(int i=1;i<N;i++)
f[i]=1LL*rand()*rand()%P;
for(int i=2;i<N;i++)
{
if(!pri[i])
{
g[i].push_back(i);
for(int j=2;j*i<N;j++)
g[j*i].push_back(i),pri[j*i]=1;
}
}
for(int i=1;i<=n;i++)
{
s[i]=s[i-1];
for(int j=0;j<g[a[i]].size();j++)
{
int k=a[i],cnt=0;
while(k%g[a[i]][j]==0)
k/=g[a[i]][j],++cnt;
op=((c[g[a[i]][j]]+cnt)%3-c[g[a[i]][j]]%3);
c[g[a[i]][j]]+=cnt;
(s[i]+=(1LL*f[g[a[i]][j]]*op%P+P)%P)%=P;
}
}
while(q--)
{
scanf("%d%d",&l,&r);
if(s[r]==s[l-1])
printf("Yes\n");
else
printf("No\n");
}
}

[ABC238G] Cubic?的更多相关文章

  1. 3DShader之立方体环境映射(cubic environment mapping)

    前面讲了球形环境映射,然而目前采用更多的是立方体环境映射.国际惯例:上图先: 1.反射: 2.折射 3.fresnel(反射+折射) 4.色散 好了,大概讲下原理, 立方体纹理我就不多讲了,它以一个3 ...

  2. BITMAP图片压缩算法三则--bilinear、nearest、cubic

    原文:http://blog.chinaunix.net/uid-253932-id-3037805.html 工作需要,要弄截图且缩小.截图倒是好说,WIN API可以搞定,但是缩小且尽量不失真,这 ...

  3. 泡泡一分钟:Cubic Range Error Model for Stereo Vision with Illuminators

    Cubic Range Error Model for Stereo Vision with Illuminators 带有照明器的双目视觉的三次范围误差模型 "链接:https://pan ...

  4. cubic与spline插值点处的区别

    cubic与spline都是Matlab的三次样条插值法,但是它们在插值点处仍然有着很微妙的区别,这个区别说明不了两种方法的好坏,只能根据实际情况进行合理筛选.以一维插值为例: clc clear % ...

  5. UVA-1604 Cubic Eight-Puzzle (双向BFS+状态压缩+限制搜索层数)

    题目大意:立体的八数码问题,一次操作是滚动一次方块,问从初始状态到目标状态的最少滚动次数. 题目分析:这道题已知初始状态和目标状态,且又状态数目庞大,适宜用双向BFS.每个小方块有6种状态,整个大方格 ...

  6. tcp cubic代码分析

    /* * TCP CUBIC: Binary Increase Congestion control for TCP v2.3 * Home page: * http://netsrv.csc.ncs ...

  7. hdu 6216 A Cubic number and A Cubic Number【数学题】

    hdu 6216 A Cubic number and A Cubic Number[数学] 题意:判断一个素数是否是两个立方数之差,就是验差分.. 题解:只有相邻两立方数之差才可能,,因为x^3-y ...

  8. 从CUBIC/BBR的TCP ACK失速说起

    上周有同事问,延迟ACK到底对应用层会产生什么后果,我也不知道该如何作答,于是丢了一个链接: TCP之Delay ACK在Linux和Windows上实现的异同-Linux的自适应ACK: 是的,这是 ...

  9. HDU 6216 A Cubic number and A Cubic Number【数学思维+枚举/二分】

    Problem Description A cubic number is the result of using a whole number in a multiplication three t ...

  10. 2017青岛网络赛1011 A Cubic number and A Cubic Number

    A Cubic number and A Cubic Number Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65535/3276 ...

随机推荐

  1. 7、Spring之基于注解管理bean

    本质上:所有一切的操作都是Java代码来完成的,XML和注解只是告诉框架中的Java代码如何执行. 7.1.环境搭建 创建名为spring_ioc_annotation的新module,过程参考3.1 ...

  2. tailwindcss -原子化 CSS 框架

    原子化 CSS 框架 我记得很久之前有时候为了少写些css,我们通常会有如下的样板代码 .block { display: block; } .flex { display:flex } .flex- ...

  3. springboot项目自动关闭进程重启脚本

    话不多说,先上脚本 kill -15 $(netstat -nlp | grep :9095 | awk '{print $7}' | awk -F"/" '{ print $1 ...

  4. SpringBoot + 自定义注解,实现用户操作日志(支持SpEL表达式)

    背景 一个成熟的系统,都会针对一些关键的操作,去创建用户操作日志. 比如: XX人创建了一条订单,订单号:XXXXXXXXX 因为操作人或者订单号是动态的,所以有些开发人员,不知道获取,就将这种操作日 ...

  5. MySQL实战实战系列 01 基础架构:一条SQL查询语句是如何执行的?

    这是专栏的第一篇文章,我想来跟你聊聊 MySQL 的基础架构.我们经常说,看一个事儿千万不要直接陷入细节里,你应该先鸟瞰其全貌,这样能够帮助你从高维度理解问题.同样,对于 MySQL 的学习也是这样. ...

  6. MySQL实战实战系列 02 日志系统:一条SQL更新语句是如何执行的?

    前面我们系统了解了一个查询语句的执行流程,并介绍了执行过程中涉及的处理模块.相信你还记得,一条查询语句的执行过程一般是经过连接器.分析器.优化器.执行器等功能模块,最后到达存储引擎. 那么,一条更新语 ...

  7. Vue-基本语法及事件绑定

    一.基本语法 v-bind绑定: 双大括号不能在 HTML attributes 中使用.想要响应式地绑定一个 attribute,应该使用 v-bind 指令 代码展示: <div id=&q ...

  8. Record -「NOIP-S 2020」赛后总结

    不是特别想说伤心的事情. T1 一遍过完所有大样例,此时只过去了十几二十分钟,不过之前花了半个小时通读了整个 PDF 所以此时大概过了 1h. T2 大概花了十几分钟胡出了一个反着枚举就是正解的 n^ ...

  9. 【Python】代理池针对ip拦截破解

    代理池是一种常见的反反爬虫技术,通过维护一组可用的代理服务器,来在被反爬虫限制的情况下,实现数据的爬取.但是,代理池本身也面临着被目标网站针对ip进行拦截的风险. 本文将详细介绍代理池针对ip拦截破解 ...

  10. POWERBI_1分钟学会_连续上升或下降指标监控

    一:数据源 模拟数据为三款奶茶销量的日销售数据源,日期是23.8.24-23.8.31.A产品为连续7天,日环比下降,B产品为连续3天,日环比下降,C产品为连续2天,日环比下降. 二:建立基础度量值 ...