2734: [HNOI2012]集合选数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1070  Solved: 623
[Submit][Status][Discuss]

Description

《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了。

Input

只有一行,其中有一个正整数 n,30%的数据满足 n≤20。

Output

仅包含一个正整数,表示{1, 2,..., n}有多少个满足上述约束条件 的子集。

Sample Input

4

Sample Output

8

【样例解释】

有8 个集合满足要求,分别是空集,{1},{1,4},{2},{2,3},{3},{3,4},{4}。

HINT

Source

day2

Solution

一开始真没想到..

就是写一个矩阵

$$\begin{bmatrix}x &  3x&  9x& ...&\\ 2x &  6x&  18x& ...&\\ 4x&  12x&  36x& ...&\\  ...&  ...&  ...&  ...& \end{bmatrix}$$

然后我们发现实际上就是需要求矩阵中,不允许出现相邻的两个数。

因为这个矩阵的列数是$log_{3}$,行数是$log_{2}$的,显然可以状压..

但是有些数并不会出现在这个矩阵中,所以构造完一个后,找下一个没出现过的x重新构造,乘法原理结合起来即可。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 100010
#define P 1000000001
int a[][],N,M,end[];
LL f[][],bin[],ANS=;
bool visit[MAXN];
inline void Pre(int x)
{
memset(a,,sizeof(a));
memset(end,,sizeof(end)); end[]=;
a[][]=x;
for (int i=; ; i++)
if ((a[i-][]<<)<=N) a[i][]=a[i-][]<<; else {M=i-; break;}
for (int i=; i<=M; i++)
for (int j=; ; j++)
if (a[i][j-]*<=N) a[i][j]=a[i][j-]*; else {end[i]=j-; break;}
// puts("======================================");
// for (int i=1; i<=M; i++,puts(""))
// for (int j=1; a[i][j]; j++)
// printf("%d ",a[i][j]);
// puts("======================================");
for (int i=; i<=M; i++)
for (int j=; j<=end[i]; j++)
visit[a[i][j]]=;
// for (int i=1; i<=M; i++) printf("%d ",end[i]); puts("");
}
inline LL DP(int x)
{
Pre(x); memset(f,,sizeof(f)); f[][]=;
for (int i=; i<=M; i++)
for (int j=; j<bin[end[i]]; j++)
if (f[i][j])
for (int k=; k<bin[end[i+]]; k++)
(f[i+][k]=(!(j&k) && !(k&(k>>)))? (f[i][j]+f[i+][k]) : f[i+][k])%=P;
return f[M+][];
}
int main()
{
N=read();
bin[]=; for (int i=; i<=; i++) bin[i]=bin[i-]<<;
for (int i=; i<=N; i++) if (!visit[i]) (ANS*=DP(i))%=P;
printf("%lld\n",ANS);
return ;
}

断断续续写了2节课....一开始边界搞得有问题特别不科学.....这是弱智,

【BZOJ-2732】集合选数 状压DP (思路题)的更多相关文章

  1. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  2. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  3. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  4. 【BZOJ-2734】集合选数 状压DP (思路题)

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Statu ...

  5. 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$

    正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...

  6. $HNOI2012\ $ 集合选数 状压$dp$

    \(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...

  7. bzoj 2734 [HNOI2012]集合选数 状压DP+预处理

    这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...

  8. BZOJ.4145.[AMPPZ2014]The Prices(状压DP)

    BZOJ 比较裸的状压DP. 刚开始写麻烦惹... \(f[i][s]\)表示考虑了前\(i\)家商店,所买物品状态为\(s\)的最小花费. 可以写求一遍一定去\(i\)商店的\(f[i]\)(\(f ...

  9. bzoj 2734 集合选数

    Written with StackEdit. Description <集合论与图论>这门课程有一道作业题,要求同学们求出\(\{1, 2, 3, 4, 5\}\)的所有满足以 下条件的 ...

随机推荐

  1. 基于pygtk的linux有道词典

    基于pygtk的linux有道词典 一.桌面词典设计 想把Linux用作桌面系统,其中一部分障碍就是Linux上没有像有道一样简单易用的词典.其实我们完全可以自己开发一款桌面词典, 而且开发一款桌面词 ...

  2. 第一课 ionic 日志输出

    写程序的首要问题就是要打印日志,因为只有将日志输出才能真正了解程序的运行状态. 日志输出有两种方式 1.console输出 console.log("测试一下") console. ...

  3. 活用UML-软件设计高手(深圳 2014年4月26-27日)

      我们将在深圳为您奉献高级技术课程”活用UML-软件设计高手“,首席专家张老师将会为您分享软件架构设计.数据库设计.用户体验设计及详细设计的最佳实践,帮助您成为优秀的软件设计师! 时间:2014.0 ...

  4. 关于Hibernate 的数据库配置

    <hibernate-configuration>    <session-factory name="mySessionFactory">        ...

  5. #研发解决方案介绍#基于ES的搜索+筛选+排序解决方案

    郑昀 基于胡耀华和王超的设计文档 最后更新于2014/12/3 关键词:ElasticSearch.Lucene.solr.搜索.facet.高可用.可伸缩.mongodb.SearchHub.商品中 ...

  6. Erlang/OTP 17.0-rc1 新引入的"脏调度器"浅析

    最近在做一些和 NIF 有关的事情,看到 OTP 团队发布的 17 rc1 引入了一个新的特性“脏调度器”,为的是解决 NIF 运行时间过长耗死调度器的问题.本文首先简单介绍脏调度器机制的用法,然后简 ...

  7. YourSQLDba设置共享路径备份

    YourSQLDba可以将数据库备份到网络路径(共享路径),这个也是非常灵活的一个功能,以前一直没有使用过这个功能,最近由于一个需求,于是我测试了一下YourSQLDba备份到网络路径,中间遇到了一些 ...

  8. MySQL(三)

    MYSQL(三) 上一章给大家说的是数据库的视图,存储过程等等操作,这章主要讲索引,以及索引注意事项,如果想看前面的文章,url如下: MYSQL入门全套(第一部) MYSQL入门全套(第二部) 索引 ...

  9. 012.对netmap API的解读

    一.简要说明: 1.netmap API主要为两个头文件netmap.h 和netmap_user.h ,当解压下载好的netmap程序后,在./netmap/sys/net/目录下,本文主要对这两个 ...

  10. [转]不优雅的方式处理 xlrd 中 int/float 的问题

    原址:http://blog.chedushi.com/archives/7258 最近在用 xlrd 写一个题库自动导出的程序,但碰到一个比较 ugly 的问题. 程序要求是将 xls 文件中的数据 ...