NC19999 [HAOI2016]放棋子
题目
题目描述
给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行只有一枚棋子,每列只有一枚棋子的限制,求有多少种方案。
输入描述
第一行一个N,接下来一个N*N的矩阵。N ≤ 200,0表示没有障碍,1表示有障碍,输入格式参考样例
输出描述
一个整数,即合法的方案数。
示例1
输入
2
0 1
1 0
输出
1
题解
知识点:排列组合,高精度。
注意到在题目条件下,排列方案数和障碍物出现位置没有任何关系,任何情况都等价于形如下方矩阵的答案:
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
我们发现,这个矩阵答案其实就是 \(n\) 个元素的错排数 \(D_n\) 。
众所周知,\(D_n = (n-1)(D_{n-1} + D_{n-2})\) 。小小解释一下:
- \((n-1)D_{n-2}\) 表示第 \(n\) 个数和前面 \(n-1\) 个数交换,交换的那个数呆在第 \(n\) 个位置,剩下的错排。
- \((n-1)D_{n-1}\) 表示第 \(n\) 个数和前面 \(n-1\) 个数交换,交换的那个数不在第 \(n\) 个位置,和剩下的一起错排。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
///继承vector解决位数限制(当前最大位数是9倍整型最大值),操作方便(注意size()返回无符号长整型,尽量不要直接把size放入表达式)
struct Huge_Int :vector<long long> {
static const int WIDTH = 9;///压位数,压9位以下 比较安全
static const long long BASE = 1e9;///单位基
static const long long MAX_INT = ~(1 << 31);///最大整型
bool SIGN;
///初始化,同时也可以将低精度转高精度、字符串转高精度
///无需单独写高精度数和低精度数的运算函数,十分方便
Huge_Int(long long n = 0) { *this = n; }
Huge_Int(const string &str) { *this = str; }
///格式化,包括进位和去前导0,用的地方很多,先写一个
Huge_Int &format(int fixlen = 1) {//去0后长度必须大于等于fixlen,给乘法用的
while (size() > fixlen && !back()) pop_back();//去除最高位可能存在的0
if (!back()) SIGN = 0;
for (int i = 1; i < size(); ++i) {
(*this)[i] += (*this)[i - 1] / BASE;
(*this)[i - 1] %= BASE;
}//位内进位
while (back() >= BASE) {
push_back(back() / BASE);
(*this)[size() - 2] %= BASE;
}//位外进位
return *this;//为使用方便,将进位后的自身返回引用
}
///归零
void reset() {
clear();
SIGN = 0;
}
///重载等于,初始化、赋值、输入都用得到
Huge_Int operator=(long long n) {
reset();
SIGN = n < 0;
if (SIGN) n = -n;
push_back(n);
format();
return *this;
}
Huge_Int operator=(const string &str) {
reset();
if (str.empty()) push_back(0);
SIGN = str[0] == '-';
for (int i = str.length() - 1;i >= 0 + SIGN;i -= WIDTH) {
long long tmp = 0;
for (int j = max(i - WIDTH + 1, 0 + SIGN);j <= i;j++)
tmp = (tmp << 3) + (tmp << 1) + (str[j] ^ 48);
push_back(tmp);
}
format();
return *this;
}
///重载输入输出
friend istream &operator>>(istream &is, Huge_Int &tmp) {
string str;
if (!(is >> str)) return is;
tmp = str;
return is;
}
friend ostream &operator<<(ostream &os, const Huge_Int &tmp) {
if (tmp.empty()) os << 0;
else {
if (tmp.SIGN) os << '-';
os << tmp[tmp.size() - 1];
}
for (int i = tmp.size() - 2;i >= 0;i--) {
os << setfill('0') << setw(WIDTH) << tmp[i];
}
return os;
}
///重载逻辑运算符,只需要小于,其他的直接代入即可
///常量引用当参数,避免拷贝更高效
friend bool operator<(const Huge_Int &a, const Huge_Int &b) {
if (a.SIGN ^ b.SIGN) return a.SIGN;
if (a.size() != b.size()) return a.SIGN ? a.size() > b.size() :a.size() < b.size();
for (int i = a.size() - 1; i >= 0; i--)
if (a[i] != b[i])return a.SIGN ? a[i] > b[i] : a[i] < b[i];
return 0;
}
friend bool operator>(const Huge_Int &a, const Huge_Int &b) { return b < a; }
friend bool operator>=(const Huge_Int &a, const Huge_Int &b) { return !(a < b); }
friend bool operator<=(const Huge_Int &a, const Huge_Int &b) { return !(a > b); }
friend bool operator!=(const Huge_Int &a, const Huge_Int &b) { return a < b || b < a; }
friend bool operator==(const Huge_Int &a, const Huge_Int &b) { return !(a != b); }
///重载负号
friend Huge_Int operator-(Huge_Int a) { return a.SIGN = !a.SIGN, a; }
///绝对值函数
friend Huge_Int abs(Huge_Int a) { return a.SIGN ? (-a) : a; }
///加法,先实现+=,这样更简洁高效
friend Huge_Int &operator+=(Huge_Int &a, const Huge_Int &b) {
if (a.SIGN ^ b.SIGN) return a -= (-b);
if (a.size() < b.size()) a.resize(b.size());
for (int i = 0; i < b.size(); i++) a[i] += b[i];//被加数要最大位,并且相加时不要用未定义区间相加
return a.format();
}
friend Huge_Int operator+(Huge_Int a, const Huge_Int &b) { return a += b; }
friend Huge_Int &operator++(Huge_Int &a) { return a += 1; }
friend Huge_Int operator++(Huge_Int &a, int) {
Huge_Int old = a;
++a;
return old;
}
///减法,由于后面有交换,故参数不用引用
friend Huge_Int &operator-=(Huge_Int &a, Huge_Int b) {
if (a.SIGN ^ b.SIGN) return a += (-b);
if (abs(a) < abs(b)) {
Huge_Int t = a;
a = b;
b = t;
a.SIGN = !a.SIGN;
}
for (int i = 0; i < b.size(); a[i] -= b[i], i++) {
if (a[i] < b[i]) {//需要借位
int j = i + 1;
while (!a[j]) j++;
while (j > i) a[j--]--, a[j] += BASE;
}
}
return a.format();
}
friend Huge_Int operator-(Huge_Int a, const Huge_Int &b) { return a -= b; }
friend Huge_Int &operator--(Huge_Int &a) { return a -= 1; }
friend Huge_Int operator--(Huge_Int &a, int) {
Huge_Int old = a;
--a;
return old;
}
///乘法,不能先实现*=,因为是类多项式相乘,每位都需要保留,不能覆盖
friend Huge_Int operator*(const Huge_Int &a, const Huge_Int &b) {
Huge_Int n;
n.SIGN = a.SIGN ^ b.SIGN;
n.assign(a.size() + b.size() - 1, 0);//表示乘积后最少的位数(可能会被format消掉,因此添加了format参数)
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++)
n[i + j] += a[i] * b[j];
n.format(n.size());//提前进位
}
return n;//最后进位可能会溢出
}
friend Huge_Int &operator*=(Huge_Int &a, const Huge_Int &b) { return a = a * b; }
///带余除法函数,方便除法和模运算,暂时写不出高效的高精与高精的除法
friend Huge_Int divmod(Huge_Int &a, const Huge_Int &b) {//O(logn),待修改
assert(b != 0);
Huge_Int n;
if (-MAX_INT - 1 <= b && b <= MAX_INT) {//除数小于等于整型才能用这个,不然会溢出
n = a;
n.SIGN = a.SIGN ^ b.SIGN;
long long rest = 0;
long long bl = 0;
for (int i = b.size() - 1;i >= 0;i--) bl = bl * BASE + b[i];
for (int i = n.size() - 1;i >= 0;i--) {
rest *= BASE;
n[i] += rest;
rest = n[i] % bl;
n[i] /= bl;
}
a = a.SIGN ? (-rest) : rest;
return n.format();
}
else {//考虑倍增或者二分优化
n.SIGN = a.SIGN ^ b.SIGN;
for (int i = a.size() - b.size(); abs(a) >= abs(b); i--) {//减法代替除法
Huge_Int c, d;
d.assign(i + 1, 0);
d.back() = 1;
d.SIGN = n.SIGN;
c = b * d;//提高除数位数进行减法
while (abs(a) >= abs(c)) a -= c, n += d;
d.pop_back();
if (!d.empty()) {//遍历压的位
d.back() = BASE / 10;
for (int i = 1;i < WIDTH;i++) {
c = b * d;
while (abs(a) >= abs(c)) a -= c, n += d;
d.back() /= 10;
}
}
}
return n;
}
}
friend Huge_Int operator/(Huge_Int a, const Huge_Int &b) { return divmod(a, b); }
friend Huge_Int &operator/=(Huge_Int &a, const Huge_Int &b) { return a = a / b; }
friend Huge_Int &operator%=(Huge_Int &a, const Huge_Int &b) { return divmod(a, b), a; }
friend Huge_Int operator%(Huge_Int a, const Huge_Int &b) { return a %= b; }
};
Huge_Int f[207];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 1;i <= n;i++)
for (int j = 1, x;j <= n;j++)
cin >> x;
f[0] = 1;
f[1] = 0;
for (int i = 2;i <= n;i++) f[i] = (i - 1) * (f[i - 1] + f[i - 2]);
cout << f[n] << '\n';
return 0;
}
NC19999 [HAOI2016]放棋子的更多相关文章
- 【BZOJ4563】[Haoi2016]放棋子 错排+高精度
[BZOJ4563][Haoi2016]放棋子 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍 ...
- 洛谷P3182 [HAOI2016]放棋子
P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...
- bzoj4563: [Haoi2016]放棋子(错排+高精)
4563: [Haoi2016]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 387 Solved: 247[Submit][Status] ...
- [Haoi2016]放棋子 题解
4563: [Haoi2016]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 440 Solved: 285[Submit][Status] ...
- BZOJ4563: [Haoi2016]放棋子
Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在 这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行 ...
- [HAOI2016] 放棋子及错排问题
题目 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足 ...
- BZOJ4563:[HAOI2016]放棋子——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4563 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列 ...
- BZOJ 4563: [Haoi2016]放棋子
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 389 Solved: 248[Submit][Status][Discuss] Descriptio ...
- BZOJ——T 4563: [Haoi2016]放棋子
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 387 Solved: 247[Submit][Status][Discuss] Descriptio ...
- 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)
传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...
随机推荐
- zookeeper源码(01)集群启动
本文介绍一下zookeeper-3.5.7集群安装. 解压安装 tar zxf apache-zookeeper-3.5.7-bin.tar.gz 创建数据.日志目录: mv apache-zooke ...
- NewStarCTF 2023 公开赛道 WEEK4|CRYPTO WP
RSA Variation II 1.题目信息 提示:"Schmidt Samoa" 附件信息 from secret import flag from Crypto.Util.n ...
- Laravel - Eloquent 删除数据
public function ormDelete() { # 1.通过模型删除 // $student = Student::where('id',5 ...
- Laravel - 配置 数据库
- 百度网盘(百度云)SVIP超级会员共享账号每日更新(2024.01.03)
一.百度网盘SVIP超级会员共享账号 可能很多人不懂这个共享账号是什么意思,小编在这里给大家做一下解答. 我们多知道百度网盘很大的用处就是类似U盘,不同的人把文件上传到百度网盘,别人可以直接下载,避免 ...
- 【面试题精讲】Redis如何实现分布式锁
首发博客地址 系列文章地址 Redis 可以使用分布式锁来实现多个进程或多个线程之间的并发控制,以确保在给定时间内只有一个进程或线程可以访问临界资源.以下是一种使用 Redis 实现分布式锁的常见方法 ...
- [转帖]Nginx - 根据IP分配不同的访问后端
https://www.cnblogs.com/hukey/p/11868017.html 1. 需求分析 为了在线上环境提供测试分支,规定将某IP转发到测试程序地址.如果是 ngx 直接对外,采用 ...
- [转帖]InfluxDB 修改数据存储路径
1.创建数据存储目录 mkdir -p /home/data/influxdb 说明:目录可以根据实际情况进行修改. 2.设置目录访问权限 sudo chown influxdb.influxdb / ...
- [转帖]45个处理字符串的Python方法
https://baijiahao.baidu.com/s?id=1738413163267646541&wfr=spider&for=pc 一.题目解析 先来看一个题目: 判断用 ...
- [转帖]细说Redis监控和告警
https://blog.csdn.net/sD7O95O/article/details/78096956 对于任何应用服务和组件,都需要一套完善可靠谱监控方案.尤其redis这类敏感的纯内存.高并 ...