2012年的OSDI上google发布了Spanner数据库。个人认为Spanner对于版本控制,事务外部一致性的处理,使用TrueTime + Timestamp进行全球备份同步的实现都比较值得一看。个人认为对于其中时序逻辑的理解对在大范围内(通常是全国到全球)部署分布式DB以确保复制同步有重要意义。

key point:

external consistency -> txn sequence

truetime + timestamp, sync & multi-version

global deployment

2PC 2PL

3 basic txns(RW, RO, snapshot)

Spanner: Globally-Distributed Database

Implementation

Different environment: universe

test development production......

Hierarchy

  1. universe: global

    The universe master and the placement driver are currently singletons.

  2. zone: manage deployment unit; logical & physical isolation

    zone master & location proxy

  3. spanserver
  4. tablet

Spanserver

software stack

1 leader, server replica, in different data centers

all have:

  1. tablet

    $$

    (key:string, timestamp:int64) → string

    $$

  2. Colossus: a distributed filesystem like GFS

  3. Paxos state machine: to support replication, for consistently replicated bag of mappings, replicas set: Paxos group

    Each state machine stores its metadata and log in its corresponding tablet. Paxos implementation supports long-lived leaders with time-based leader leases.

    Writes must initiate the Paxos protocol at the leader; reads access state directly from the underlying tablet at any replica that is sufficiently up-to-date.

Paxos: implementation pipelined, write in-order

leader uniquely has:

  1. lock table: the state for two-phase locking
  2. transaction manager: for distributed transactions, across Paxos group

Directories and Placement

based on k/v map, bucketing abstraction called a directory, which is a set of contiguous keys that share a common prefix.

tablet: different with bigtable, spanner tablet is a container that may encapsulate multiple partitions of the row space

Movedir: background, not a single txn, register fact and uses a transaction to atomically move small data!(actually the fragment, not a big dir)

Data model

  1. schematized semi-relational tables
  2. a query language
  3. generalpurpose transactions

Spanner’s data model is not purely relational, in that rows must have names.

hierarchies: in database schemas via the INTERLEAVE IN: get locality relationships.


TrueTime

API:

  • now: return interval[earliest, latest]
  • after
  • before

underlying time references: GPS and atomic clocks


Concurrency Control

two-phase commit generates a Paxos write for the prepare phase that has no corresponding Spanner client write.

transactions:

  • read-write: (including Standalone writes)
  • read-only: without locking, any replica that is sufficiently up-to-date
  • snapshot-reads: read in the past, no locking, any replica that is sufficiently up-to-date

Paxos leader lease:

timed leases: to make leadership long-lived, for lease votes

lease interval: [discover quorum of votes, no longer has votes]

Smax: the maximum timestamp used by a leader.

two-phase commit: a protocol maintain consistency - unsuccess: rollback

  1. prepare phase
  2. commit phase

RW txn:

buffered before written

wound-wait :avoid deadlock

both two have writing lock,

  • non-coordinator participant leader
  • coordinator leader: skip prepare phase

RO txn:

execution flow:

  • assign a timestamp sread
  • execute the transaction’s reads as snapshot reads at sread.

simply select sread = TT.now().latest

  • single Paxos group

    Define LastTS() to be the timestamp of the last committed write at a Paxos group.

  • multiple Paxos groups

Schema-Change Transactions

Discussion

Paxos Truetime consistency

strong consistency cross data centers

data model: not pure relational(can use sql )

tablets are replicated, concurrtency corrtdiantion by Pxaos

txns with multiple Paxos groups --- 2PC coordination

leader

what's the actually difference compared with the classical distributed database?????

consistent versions of the data

the only reading data

the spirit kernel: the timestamp & version control

time mechenism

global-time consistency: timestamp no uncertainty

commit time: interval

there are two txns, to distinguish one happened actually before another

Participant leader -> Transaction manager -> Paxos group

three basic r/w ops, make the external consistency, global timestamp for sync across regions and certain txns sequences

Concurrency control : timestamp management to do

timestamp -> multi-version -> snapshot

almost all the work in spanner around the sequence of timestamp!

condition: multiple data centers

target: external consistency ~= linearizability

Two phase locking:

  1. growing phase: acquire lock
  2. shrinking phase: release lock
  • 2PC: distributed system, global manage
  • 2PL: one node, multi-txns, resource acquire and manage,

TrueTime: local clock -> global clock, which is essentially important for global distributed system because of sync needs.

uncertainty interval[earliest, latest]: try to make it as small as possible(increase accuracy) -> less lock -> increase efficiency

Thus, Timestamps + TrueTime can build a global accessible time service for all the application around the world.

external-consistency invariant: s1 < s2

Google全球分布式数据库:Spanner的更多相关文章

  1. 全球分布式数据库:Google Spanner(论文翻译)

    本文由厦门大学计算机系教师林子雨翻译,翻译质量很高,本人只对极少数翻译得不太恰当的地方进行了修改. [摘要]:Spanner 是谷歌公司研发的.可扩展的.多版本.全球分布式.同步复制数据库.它是第一个 ...

  2. 全球级的分布式数据库 Google Spanner原理

    开发四年只会写业务代码,分布式高并发都不会还做程序员?->>>    Google Spanner简介 Spanner 是Google的全球级的分布式数据库 (Globally-Di ...

  3. 分布式数据库Google Spanner原理分析

    Spanner 是Google的全球级的分布式数据库 (Globally-Distributed Database) .Spanner的扩展性达到了令人咋舌的全球级,可以扩展到数百万的机器,数已百计的 ...

  4. 怎样打造一个分布式数据库——rocksDB, raft, mvcc,本质上是为了解决跨数据中心的复制

    摘自:http://www.infoq.com/cn/articles/how-to-build-a-distributed-database?utm_campaign=rightbar_v2& ...

  5. 这次,听人大教授讲讲分布式数据库的多级一致性|TDSQL 关键技术突破

    近年来,凭借高可扩展.高可用等技术特性,分布式数据库正在成为金融行业数字化转型的重要支撑.分布式数据库如何在不同的金融级应用场景下,在确保数据一致性的前提下,同时保障系统的高性能和高可扩展性,是分布式 ...

  6. 云时代的分布式数据库:阿里分布式数据库服务DRDS

    发表于2015-07-15 21:47| 10943次阅读| 来源<程序员>杂志| 27 条评论| 作者王晶昱 <程序员>杂志数据库DRDS分布式沈询 摘要:伴随着系统性能.成 ...

  7. 从NoSQL到NewSQL,谈交易型分布式数据库建设要点

    在上一篇文章<从架构特点到功能缺陷,重新认识分析型分布式数据库>中,我们完成了对不同"分布式数据库"的横向分析,本文Ivan将讲述拆解的第二部分,会结合NoSQL与Ne ...

  8. 跨时代的分布式数据库 – 阿里云DRDS详解(转)

    原文章地址:https://www.csdn.net/article/a/2015-08-28/15827676 跨时代的分布式数据库 – 阿里云DRDS详解 发表于2015-08-28 18:39| ...

  9. SDP(6):分布式数据库运算环境- Cassandra-Engine

    现代信息系统应该是避不开大数据处理的.作为一个通用的系统集成工具也必须具备大数据存储和读取能力.cassandra是一种分布式的数据库,具备了分布式数据库高可用性(high-availability) ...

  10. 开源分布式数据库SequoiaDB在去哪儿网的实践

    编者注: 中国的数据库行业也迎来了一波新的热点事件.分布式数据库这块新消息不断,也让大家开始关注中国的分布式数据库.首先是短短一周内,Pingcap和SequoiaDB巨杉数据库陆续宣布了C轮的数千万 ...

随机推荐

  1. 小白学标准库之 log

    日常开发中,日志 log 几乎是必不可少.本文旨在介绍 log 的使用和内部实现等. 1. log 使用及实现 package main import ( "fmt" " ...

  2. APP Inventor的tcp连接扩展插件ClientSocketAl2Ext

    参考原文:https://www.cnblogs.com/bemfa/p/13390251.html 下载地址:https://wwtl.lanzoum.com/ik0Ky1clu41a B站关联学习 ...

  3. Oracle 监控客户端的连接数量趋势

    Oracle 监控客户端的连接数量趋势 背景 前期简单总结了table方式将表信息展示出来的方法 但是感觉这样非常不直观. 想着能够做出一个趋势来. 时序数据库的最佳的使用方式. 之前的确是太靠自己的 ...

  4. Kafka的部分初始化参数的学习与整理

    Kafka的部分初始化参数的学习与整理 背景 前段时间跟同事一起处理过kafka的topic offset的retention 时间与 log 的retention时间不一致. 导致消息还有, 但是o ...

  5. [转帖]Oracle迁移到MySQL时数据类型转换问题

    https://www.cnblogs.com/yeyuzhuanjia/p/17431979.html 最近在做"去O"(去除Oracle数据库)的相关工作,需要将Oracle表 ...

  6. [转帖]Kafka关键参数设置

    https://www.cnblogs.com/wwcom123/p/11181680.html 生产环境中使用Kafka,参数调优非常重要,而Kafka参数众多,我们的java的Configurat ...

  7. shell的date的部分处理--需要记住..

    在Linux中,可以使用date命令获取日期, date 获取当前完整日期 date --date="3 days ago" 获取3天前的完整日期 date --date=&quo ...

  8. [转帖]12.计算机网络---iptables防火墙管理工具

    文章目录 一.防火墙基础知识 1.1 防火墙是什么? 1.2 iptables基础知识 1.3 netfilter和iptables的关系: 1.4 新型防火墙工具:firewalld 二.iptab ...

  9. node借助jsonwebtoken生成token以及验证token是否过期

    生成token使用 jsonwebtoken 插件 我当时使用的版本"jsonwebtoken": "^9.0.0", cnpm i jsonwebtoken ...

  10. 基于spring security创建基本项目框架

    SpringBoot建项目步骤 建表 新建项目 (package name可以自定义,整个项目只能在该包下) 选择可能有到的依赖 (别忘了勾选SQL中的Mybatis Framework,创建项目 如 ...