如需了解示例完整代码及其后续内容请访问: https://www.emperinter.info/2020/08/01/learning-rate-in-pytorch/

缘由

自己在尝试了官方的代码后就想提高训练的精度就想到了调整学习率,但固定的学习率肯定不适合训练就尝试了几个更改学习率的方法,但没想到居然更差!可能有几个学习率没怎么尝试吧!

更新方法

直接修改optimizer中的lr参数;

  • 定义一个简单的神经网络模型:y=Wx+b
import torch
import matplotlib.pyplot as plt
%matplotlib inline
from torch.optim import *
import torch.nn as nn class net(nn.Module):
def __init__(self):
super(net,self).__init__()
self.fc = nn.Linear(1,10)
def forward(self,x):
return self.fc(x)
  • 直接更改lr的值
model = net()
LR = 0.01
optimizer = Adam(model.parameters(),lr = LR)
lr_list = []
for epoch in range(100):
if epoch % 5 == 0:
for p in optimizer.param_groups:
p['lr'] *= 0.9
lr_list.append(optimizer.state_dict()['param_groups'][0]['lr'])
plt.plot(range(100),lr_list,color = 'r')

关键是如下两行能达到手动阶梯式更改,自己也可按需求来更改变换函数

for p in optimizer.param_groups:
p['lr'] *= 0.9

利用lr_scheduler()提供的几种衰减函数

  • torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)
参数 含义
lr_lambda 会接收到一个int参数:epoch,然后根据epoch计算出对应的lr。如果设置多个lambda函数的话,会分别作用于Optimizer中的不同的params_group
import numpy as np
lr_list = []
model = net()
LR = 0.01
optimizer = Adam(model.parameters(),lr = LR)
lambda1 = lambda epoch:np.sin(epoch) / epoch
scheduler = lr_scheduler.LambdaLR(optimizer,lr_lambda = lambda1)
for epoch in range(100):
scheduler.step()
lr_list.append(optimizer.state_dict()['param_groups'][0]['lr'])
plt.plot(range(100),lr_list,color = 'r')

  • torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)
参数 含义
T_max 对应1/2个cos周期所对应的epoch数值
eta_min 最小的lr值,默认为0
lr_list = []
model = net()
LR = 0.01
optimizer = Adam(model.parameters(),lr = LR)
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max = 20)
for epoch in range(100):
scheduler.step()
lr_list.append(optimizer.state_dict()['param_groups'][0]['lr'])
plt.plot(range(100),lr_list,color = 'r')

  • torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

在发现loss不再降低或者acc不再提高之后,降低学习率。各参数意义如下:

参数 含义
mode 'min'模式检测metric是否不再减小,'max'模式检测metric是否不再增大;
factor 触发条件后lr*=factor;
patience 不再减小(或增大)的累计次数;
verbose 触发条件后print;
threshold 只关注超过阈值的显著变化;
threshold_mode 有rel和abs两种阈值计算模式,rel规则:max模式下如果超过best(1+threshold)为显著,min模式下如果低于best(1-threshold)为显著;abs规则:max模式下如果超过best+threshold为显著,min模式下如果低于best-threshold为显著;
cooldown 触发一次条件后,等待一定epoch再进行检测,避免lr下降过速;
min_lr 最小的允许lr;
eps 如果新旧lr之间的差异小与1e-8,则忽略此次更新。

如需了解其它学习率更新方法请访问: https://www.emperinter.info/2020/08/01/learning-rate-in-pytorch/

示例

使用的更新方法

  • 代码中可选的选项有:余弦方式(默认方式,其他两种注释了)、e^-x的方式以及按loss是否不在降低来判断的三种方式,其他就自己测试吧!

  • 训练截图(第一个图为trainingg_loss,第二个为学习率变化曲线)

完整代码

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from datetime import datetime
from torch.utils.tensorboard import SummaryWriter
from torch.optim import * transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=0) testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=0) classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
#如需了解示例完整代码及其后续内容请访问: [https://www.emperinter.info/2020/08/01/learning-rate-in-pytorch/](https://www.emperinter.info/2020/08/01/learning-rate-in-pytorch/)

如需了解示例完整代码及其后续内容请访问: https://www.emperinter.info/2020/08/01/learning-rate-in-pytorch/

Pytorch学习率更新的更多相关文章

  1. PyTorch大更新!谷歌出手帮助开发,正式支持TensorBoard | 附5大开源项目

    大家又少了一个用TensorFlow的理由. 在一年一度的开发者大会F8上,Facebook放出PyTorch的1.1版本,直指TensorFlow"腹地". 不仅宣布支持Tens ...

  2. tensorflow中常用学习率更新策略

    神经网络训练过程中,根据每batch训练数据前向传播的结果,计算损失函数,再由损失函数根据梯度下降法更新每一个网络参数,在参数更新过程中使用到一个学习率(learning rate),用来定义每次参数 ...

  3. 【转载】 PyTorch学习之六个学习率调整策略

    原文地址: https://blog.csdn.net/shanglianlm/article/details/85143614 ----------------------------------- ...

  4. PyTorch学习之六个学习率调整策略

    PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现.PyTorch提供的学习率调整策略分为三大类,分别是 有序调整:等间隔调整(Step),按需调整学习率(Mul ...

  5. Pytorch系列:(八)学习率调整方法

    学习率的调整会对网络模型的训练造成巨大的影响,本文总结了pytorch自带的学习率调整函数,以及其使用方法. 设置网络固定学习率 设置固定学习率的方法有两种,第一种是直接设置一些学习率,网络从头到尾都 ...

  6. pytorch更新

    Pytorch如何更新版本与卸载,使用pip,conda更新卸载Pytorch 2018年05月22日 07:33:52 醉雨轩Y 阅读数 19047   今天我们主要汇总如何使用使用ubuntu,C ...

  7. 基于卷积神经网络的面部表情识别(Pytorch实现)----台大李宏毅机器学习作业3(HW3)

    一.项目说明 给定数据集train.csv,要求使用卷积神经网络CNN,根据每个样本的面部图片判断出其表情.在本项目中,表情共分7类,分别为:(0)生气,(1)厌恶,(2)恐惧,(3)高兴,(4)难过 ...

  8. 手写数字识别 卷积神经网络 Pytorch框架实现

    MNIST 手写数字识别 卷积神经网络 Pytorch框架 谨此纪念刚入门的我在卷积神经网络上面的摸爬滚打 说明 下面代码是使用pytorch来实现的LeNet,可以正常运行测试,自己添加了一些注释, ...

  9. Pytorch源码与运行原理浅析--网络篇(一)

    前言 申请的专栏开通了,刚好最近闲下来了,就打算开这个坑了hhhhh 第一篇就先讲一讲pytorch的运行机制好了... 记得当时刚刚接触的时候一直搞不明白,为什么自己只是定义了几个网络,就可以完整的 ...

  10. 全面解析Pytorch框架下模型存储,加载以及冻结

    最近在做试验中遇到了一些深度网络模型加载以及存储的问题,因此整理了一份比较全面的在 PyTorch 框架下有关模型的问题.首先咱们先定义一个网络来进行后续的分析: 1.本文通用的网络模型 import ...

随机推荐

  1. FreeRTOS简单内核实现2 双向链表

    FreeRTOS Kernel V10.3.1 FreeRTOS 的 list.c / list.h 文件中有 3 个数据结构.2 个初始化函数.2 个插入函数.1 个移除函数和一些宏函数,链表是 F ...

  2. RAS非对称加解密-RAS加解密和签名和验签,密钥生成器(java代码)

    RAS非对称加解密-RAS加解密和签名和验签,密钥生成器(java代码)RSA 算法是一种非对称加解密算法.服务方生成一对 RSA 密钥,即公钥 + 私钥,将公钥提供给调用方,调用方使用公钥对数据进行 ...

  3. Ceph提供nfs服务

    目录 Ceph提供nfs服务 1. 前期准备 1.1 检查模块 1.2 检查是否有nfs-ganesha集群 2. 创建nfs服务 2.1 ceph提供的nfs的架构 3. nfs导出 3.1 创建c ...

  4. Ajax分析方法

    Ajax 分析方法 以前面的微博为例,拖动刷新的内容由 Ajax 加载,而且页面的 URL 没有变化,那么应该到哪里去查看这些 Ajax 请求呢? 查看请求 需要借助浏览器的开发者工具,下面以 Chr ...

  5. transformer原理

    Transformer注意力架构原理 输入层 embedding词嵌入向量 将文本中词汇的数字表示转变为向量表示,在这样的高维空间捕捉词汇间的关系 语义相近的词语对应的向量位置也更相近 每个词先通过词 ...

  6. [iOS]Size Class不同尺寸适配的是什么样的机型(实验向)

    Size Class的定义可以翻阅网友的博客,本文不再赘述http://blog.csdn.net/yongyinmg/article/details/39315829 http://blog.csd ...

  7. 14-vertical-aligin

    01 行盒的理解 作用: 将当前行里的所有内容包裹起来 <!DOCTYPE html> <html lang="en"> <head> < ...

  8. Fake权限验证小例子

    前言 关于本地测试如何进行Fake权限验证 正文 在我们使用swagger调试本地接口的时候,我们常常因为每次需要填写token而耽误工作,不可能每次调试的时候都去本地测试环境请求一个token进行验 ...

  9. 写sql语句思路--28道关于教师、学生、成绩表的练习题---个人思路

    针对学生教师的28道练习题的思路 链接:https://pan.baidu.com/s/1TgqFAe7i0PAkZOm47-Jd0A 提取码:vvi6 部分截图如下: -- sql 28道练习题答案 ...

  10. 如何计算QPS、PV和需要部署机器数量?

    基本概念 网站访问量的常用衡量标准:独立访客(UV) 和 综合浏览量(PV),一般以日为单位来计算. 独立访客(UV):指一定时间范围内相同访客多次访问网站,只计算为1个独立访客. 综合浏览量(PV) ...