洛谷P2179 [NOI2012]骑行川藏(拉格朗日乘数法)
题面
题解
看\(mashirosky\)大佬的题解吧……这里
//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 0x3f3f3f3f
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
double readdb()
{
R double x=0,y=0.1,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(x=ch-'0';(ch=getc())>='0'&&ch<='9';x=x*10+ch-'0');
for(ch=='.'&&(ch=getc());ch>='0'&&ch<='9';x+=(ch-'0')*y,y*=0.1,ch=getc());
return x*f;
}
const int N=10005;const double eps=1e-13;
inline int sgn(R double x){return x<-eps?-1:x>eps;}
double s[N],k[N],vp[N],v[N],mx[N],E;
int n;
bool ck(double lam){
double res=0,l,r,mid;
fp(i,1,n){
l=max(0.0,vp[i]),r=mx[i],mid;
while(sgn(r-l)>0){
mid=(l+r)*0.5;
(sgn(2*lam*mid*mid*k[i]*(mid-vp[i])+1)>=0)?l=mid:r=mid;
}
v[i]=l,res+=k[i]*(v[i]-vp[i])*(v[i]-vp[i])*s[i];
if(sgn(E-res)<0)return false;
}
return true;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),E=readdb();
fp(i,1,n){
s[i]=readdb(),k[i]=readdb(),vp[i]=readdb();
mx[i]=sgn(s[i])?sqrt(E/k[i]/s[i])+vp[i]:inf;
}
double l=-inf,r=0,mid;
while(sgn(r-l)>0){
mid=(l+r)*0.5;
ck(mid)?l=mid:r=mid;
}
ck(r);
double res=0;
fp(i,1,n)res+=s[i]/v[i];
printf("%.8lf\n",res);
return 0;
}
洛谷P2179 [NOI2012]骑行川藏(拉格朗日乘数法)的更多相关文章
- [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...
- bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘
2876: [Noi2012]骑行川藏 Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1033 Solved: ...
- 【洛谷】P2179 [NOI2012]骑行川藏
题解 感谢小迪给我讲题啊,这题小迪写挺好的我就不写了吧 小迪的题解 代码 #include <iostream> #include <cstdio> #include < ...
- Luogu P2179 [NOI2012]骑行川藏
题意 给定 \(n\) 个路段,每个路段用三个实数 \(s_i,k_i,v^\prime_i\) 描述,最小化 \[F(v_1,\cdots v_n)=\sum\limits_{i=1}^{n}\fr ...
- [NOI2012]骑行川藏——拉格朗日乘子法
原题链接 不会啊,只好现学了拉格朗日乘子法,简单记录一下 前置芝士:拉格朗日乘子法 要求\(n\)元目标函数\(f(x_1,x_2,...,x_n)\)的极值,且有\(m\)个约束函数形如\(h_i( ...
- bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)
题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...
- 2876: [Noi2012]骑行川藏 - BZOJ
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...
- bzoj2876 [Noi2012]骑行川藏
Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...
- 题解 洛谷 P2179 【[NOI2012]骑行川藏】
题意为在满足\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i\leqslant E_U\)的条件下最小化\(\sum\limits_{i=1}^n\frac{ ...
随机推荐
- MyBatis 注解式开发
- linux 使用systemctl 启动服务报错: Error: No space left on device
By default, Linux only allocates 8192 watches for inotify, which is ridiculously low. And when it ru ...
- 在VMware Workstation中安装Ubuntu Server 16.04.5图解教程
最近要在Ubuntu中部署openstack,为了节省空间和内存,最终选择了Ubuntu服务器.看了很多前辈和大佬的安装教程,在这里记录一下我自己的Ubuntu Server 16.04.5的安装过程 ...
- How To Check Member In Window VS With CplusPlus?
实例说明 下面这个实例代码, 快速举例了在Win32应用程序下,对于内存的泄漏检查. 其中的原理,目前本人还是不太的理解. 只是记录了使用方法. 以后,看情况,会更新的. #ifdef _WIN32 ...
- Qt Font
Font and How to use TTF字体基本知识及其在QT中的应用 Qt为程序添加外部字体 在使用qt 添加第三方字体的时候,在程序开始的时候,使用·QFontDatabse·的静态函数加载 ...
- button作用类似于submit
不想提交,可使用以下 <a href="javascript:;" >修改</a>
- winnfsd 操作
# 查看服务端输出了哪些目录,如何挂载 vagrant@homestead:~$ showmount -e 192.168.10.1 Export list for 192.168.10.1: /C/ ...
- Java 设计模式系列(一)单例模式
Java 设计模式系列(一)单例模式 保证一个类只有一个实例,并且提供一个访可该实例的全局访问点. 一.懒汉式单例 /** * 懒汉式单例类:在第一次调用的时候实例化自己 * 1. 构造器私有化,避免 ...
- jvm编译环境搭建 win Vc篇
/************************************************************** 技术博客 http://www.cnblogs.com/itdef/ ...
- fabric实现文本聚焦、可编辑
var canvas = new fabric.Canvas('c'); var tex = new fabric.IText('click',{left:100,top:400});canvas.a ...