poj_1151 线段树
题目大意
在平面上给定n个矩形,可以相互覆盖全部或者部分,求出矩形占据的总面积。
题目分析
将矩形按照x方向的进行分割之后,将平面沿着y方向划分一系列单元(不定高度),每个矩形在y方向上占据若干连续的单元;在x方向上,将矩形按照x坐标排序之后,考虑有一个扫描线从左到右扫描,当扫描线进入矩形之后,所有矩形在扫描线上占据的总长度有可能增加,而扫面线离开某个矩形时,所有矩形在扫描线上占据的总长度有可能减少。
在计算面积的时候,将当前扫描点 所有矩形在扫描线上占据的总长度 乘以 当前扫描点到下一扫描点的长度,直到所有矩形均出扫描线。区间操作,考虑使用线段树。
实现(c++)
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
using namespace std;
#define MAX_RECT_NUM 1000
#define MAX_SEG_NUM MAX_RECT_NUM * 2
#define MAX_NODE_NUM 4*MAX_SEG_NUM
#define MAX(a, b) a > b? a :b
#define MIN(a, b) a < b? a :b
//根据矩形的上下边在y方向上划分区间单元(长度不固定),每个矩形占据y方向上的连续的几个单元,形成区间
struct Rect{
double top_left_x;
double top_left_y;
double bottom_right_x;
double bottom_right_y; int interval_beg; //在y轴上,该矩形所占据区间的起始单元序号
int interval_end; //在y轴上,该矩形所占据区间的结束单元序号(从下向上) inteval_beg 和 interval_end为 闭区间
}; Rect gRects[MAX_RECT_NUM];
vector<double> gPartPoint; //用于离散化的点纵坐标
vector<double> gSegs; //离散化之后的段单元长度 struct Node{
int beg; //在y轴方向离散化之后,节点所代表区间的起始块号
int end; //节点所代表区间的终止块号
double length; //节点所代表区间的长度(y轴方向)
int covered_num; //扫描线被多少个矩形覆盖
};
Node gNodes[MAX_NODE_NUM]; //对矩形进行x坐标从小到大排序,便于进行扫描
bool CmpToSortRect(const Rect& rect1, const Rect& rect2){
if (rect1.top_left_x == rect2.top_left_x)
return rect1.bottom_right_x < rect2.bottom_right_x;
return rect1.top_left_x < rect2.top_left_x;
} void BuildTree(int beg, int end, int index){
gNodes[index].beg = beg;
gNodes[index].end = end;
gNodes[index].covered_num = 0;
if (beg == end){
gNodes[index].length = gSegs[beg];
return;
}
int left = 2 * index + 1;
int right = 2 * index + 2;
int mid = (beg + end) / 2;
BuildTree(beg, mid, left);
BuildTree(mid + 1, end, right);
//由子节点长度得到父节点代表区间的长度
gNodes[index].length = gNodes[left].length + gNodes[right].length;
} //向下更新
void PushDown(int index){
if (gNodes[index].covered_num){
int left = 2 * index + 1, right = 2 * index + 2;
gNodes[left].covered_num += gNodes[index].covered_num;
gNodes[right].covered_num += gNodes[index].covered_num;
}
gNodes[index].covered_num = 0;
} //向上更新
void PushUp(int index){
int left = 2 * index + 1, right = 2 * index + 2;
int min = MIN(gNodes[left].covered_num, gNodes[right].covered_num);
gNodes[index].covered_num = min;
gNodes[left].covered_num -= min;
gNodes[right].covered_num -= min;
} //当扫描线进入矩形区域时step_in = true, 否则为false
void Update(int beg, int end, int index, bool step_in){
if (gNodes[index].beg >= beg && gNodes[index].end <= end){
if (step_in){
gNodes[index].covered_num++;
} else{
gNodes[index].covered_num--;
}
return;
}
if (gNodes[index].end < beg || gNodes[index].beg > end){
return;
}
if (beg > end){
return;
}
int left = 2 * index + 1, right = 2 * index + 2;
int mid = (gNodes[index].beg + gNodes[index].end) / 2;
//向下递归时,先pushdown 向下更新
PushDown(index);
Update(beg, MIN(mid, end), left, step_in);
Update(MAX(mid + 1, beg), end, right, step_in);
//递归返回进行 向上更新
PushUp(index);
} //查询,查询当前情况下,扫描线占据的矩形y方向长度
double Query(int index){
if (gNodes[index].covered_num > 0){
return gNodes[index].length;
}
if (gNodes[index].beg == gNodes[index].end){
return 0;
}
int left = 2 * index + 1, right = 2 * index + 2;
return Query(left) + Query(right);
} bool DoubleEqual(double d1, double d2){
if (abs(d1 - d2) < 1e-7){
return true;
}
return false;
}
int main(){
int n, cas = 1;
while (true){
scanf("%d", &n);
if (n == 0){
break;
}
gPartPoint.clear();
for (int i = 0; i < n; i++){
scanf("%lf %lf %lf %lf", &gRects[i].top_left_x, &gRects[i].top_left_y, &gRects[i].bottom_right_x, &gRects[i].bottom_right_y);
gPartPoint.push_back(gRects[i].top_left_y); //得到y方向上的各个离散的分界点
gPartPoint.push_back(gRects[i].bottom_right_y);
}
//对分界点进行排序,去重
sort(gPartPoint.begin(), gPartPoint.end());
vector<double>::iterator it = unique(gPartPoint.begin(), gPartPoint.end());
gPartPoint.erase(it, gPartPoint.end()); //根据分界点,得到离散化之后的区间长度
gSegs.clear();
gSegs.reserve(gPartPoint.size());
for (int i = 0; i < gPartPoint.size() - 1; i++){
double len = gPartPoint[i + 1] - gPartPoint[i];
gSegs.push_back(len);
} //得到每个矩形在y方向上占据的离散化之后的区间的 beg和end(闭区间)
for (int i = 0; i < n; i++){
vector<double>::iterator it = find(gPartPoint.begin(), gPartPoint.end(), gRects[i].top_left_y);
gRects[i].interval_beg = it - gPartPoint.begin();
it = find(gPartPoint.begin(), gPartPoint.end(), gRects[i].bottom_right_y);
gRects[i].interval_end = it - gPartPoint.begin() - 1;
} BuildTree(0, gSegs.size() - 1, 0); //将x方向的各个分割点进行排序,去重
gPartPoint.clear();
for (int i = 0; i < n; i++){
gPartPoint.push_back(gRects[i].top_left_x);
gPartPoint.push_back(gRects[i].bottom_right_x);
}
sort(gPartPoint.begin(), gPartPoint.end());
it = unique(gPartPoint.begin(), gPartPoint.end());
gPartPoint.erase(it, gPartPoint.end()); int seg_num = gSegs.size();
double sum_area = 0;
double height = 0;
int beg, end;
for (int i = 0; i < gPartPoint.size() - 1; i++){ for (int r = 0; r < n; r++){
if (DoubleEqual(gRects[r].top_left_x, gPartPoint[i])){ //扫描线进入矩形
Update(gRects[r].interval_beg, gRects[r].interval_end, 0, true);
}
if (DoubleEqual(gRects[r].bottom_right_x, gPartPoint[i])){//扫描线离开矩形
Update(gRects[r].interval_beg, gRects[r].interval_end, 0, false);
} }
height = Query(0);
sum_area += height*(gPartPoint[i + 1] - gPartPoint[i]);
}
printf("Test case #%d\n", cas ++);
printf("Total explored area: %.2lf\n\n", sum_area);
}
return 0;
}
poj_1151 线段树的更多相关文章
- bzoj3932--可持久化线段树
题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...
- codevs 1082 线段树练习 3(区间维护)
codevs 1082 线段树练习 3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
- codevs 1080 线段树点修改
先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...
- codevs 1082 线段树区间求和
codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...
- PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树
#44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...
- CF719E(线段树+矩阵快速幂)
题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...
- 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序
3779: 重组病毒 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 224 Solved: 95[Submit][Status][Discuss] ...
- 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集
3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 1878 Solved: 846[Submit][Status ...
随机推荐
- 【Unity/Kinect】Kinect入门——项目搭建
本文是Unity Store里的官方Demo包中的ReadMe翻译(别人翻的),介绍了用Unity如何入门搭建起一个Kinect项目工程. 非常感谢下面这位大大的无私奉献! http://www.ma ...
- hive输出json字符串
目前没发现有什么方便的函数可以直接使用,只能使用concat来手工拼接. 注意将null的字段值转为空,使用nvl函数 如果将hql语句写在script.q文件里面如下: select concat( ...
- Testng 的数据源 驱动測试 代码与配置
JUnit中有讲述使用注解的方式进行数据源读取进行自己主动循环測试的方法,在TestNG中也提供了对应的方法 public class TestngDataProvider { /** * 数组内的每 ...
- 轻量级ORM框架Dapper应用二:使用Dapper实现CURD操作
在上一篇文章中,讲解了如何安装Dapper,这篇文章中将会讲解如何使用Dapper使用CURD操作. 例子中使用到的实体类定义如下: using System; using System.Collec ...
- ddddddd
尊敬的老师们: 我在各方面表现优异.在学习方面,始终将学习放在首位,学习成绩名列前茅,在以往考试中从没有挂科记录,并积极参加校内.校外比赛,且多次获奖:在思想方面,积极向党组织靠拢,一直以一名优秀党员 ...
- QFTPERROR lists
- 手工配置oracle数据库
手工配置Oracle 10G Enterprise Manager今天安装oracle,反复装了几遍都报下面错误:试了几种方法都不行:由于以下错误,Enterprise Manager配置失败启动Da ...
- js学习笔记11----表单操作
1.复选框选中 var aInput = document.getElementsByTagname('input'); aInput[0].checked=true;
- Struts2中带参数的结果集
2.首先,新建一个struts2项目,项目名为ResultParam,打开index.jsp页面,修改编码格式为utf-8,添加一个超链接,用于向结果集传参数,完整代码如下: 相应的struts.xm ...
- mongodb自动关闭:页面太小,无法完成操作
解决方法: 增大虚拟内存