CF1012C Hills 题解【DP】
思路还是比较简单的 dp 吧,但是就是想不出来…甚至类似的方程都被自己推翻了
Description
Welcome to Innopolis city. Throughout the whole year, Innopolis citizens suffer from everlasting city construction.
From the window in your room, you see the sequence of \(n\) hills, where \(i\)-th of them has height \(a_i\). The Innopolis administration wants to build some houses on the hills. However, for the sake of city appearance, a house can be only built on the hill, which is strictly higher than neighbouring hills (if they are present). For example, if the sequence of heights is \(5,4,6,2\), then houses could be built on hills with heights \(5\) and \(6\) only.
The Innopolis administration has an excavator, that can decrease the height of an arbitrary hill by one in one hour. The excavator can only work on one hill at a time. It is allowed to decrease hills up to zero height, or even to negative values. Increasing height of any hill is impossible. The city administration wants to build \(k\) houses, so there must be at least \(k\) hills that satisfy the condition above. What is the minimum time required to adjust the hills to achieve the administration's plan?
However, the exact value of \(k\) is not yet determined, so could you please calculate answers for all \(k\) in range \(1\le k\le \left\lceil\frac n2\right\rceil\)? Here \(\left\lceil\frac n2\right\rceil\) denotes \(n\) divided by two, rounded up.
Input
The first line of input contains the only integer \(n(1\le n\le 5000)\)—the number of the hills in the sequence.
Second line contains \(n\) integers \(a_i(1\le a_i\le 100\ 000)\)—the heights of the hills in the sequence.
Output
Print exactly \(\left\lceil\frac n2\right\rceil\) numbers separated by spaces. The \(i\)-th printed number should be equal to the minimum number of hours required to level hills so it becomes possible to build \(i\) houses.
Examples
input
5
1 1 1 1 1
output
1 2 2
input
3
1 2 3
output
0 2
input
5
1 2 3 2 2
output
0 1 3
Note
In the first example, to get at least one hill suitable for construction, one can decrease the second hill by one in one hour, then the sequence of heights becomes \(1,0,1,1,1\) and the first hill becomes suitable for construction.
In the first example, to get at least two or at least three suitable hills, one can decrease the second and the fourth hills, then the sequence of heights becomes \(1,0,1,0,1\), and hills \(1,3,5\) become suitable for construction.
题意
现在有 \(n\) 座连在一起的山,高度从左到右分别为 \(a_i\)。现在你有一台挖掘机,每分钟可以令某一个 \(a_i\) 减一。你可以在 \(a_i>a_{i-1}\) 且 \(a_i>a_{i+1}\) 的山峰 \(i\) 盖房子。问对于 \(1\le k\le \left\lceil\frac n2 \right\rceil\) 中的每个整数 \(k\),盖 \(k\) 栋房子至少需要多长时间。
题解
针对本题有一个贪心,也就是不会有相邻的两个山同时被挖。
因此对于每个 \(i\),如果不挖这个位置,那么 \(a_i\) 是可以直接用原数据的。还有一点推论,即当 \(i\) 位置盖房子时,它一定不会被挖。挖了只会影响左右两边使他们更矮,不会产生更优的答案。
令 \(f[i][j][0/1]\) 表示前 \(i\) 座山中,盖了 \(j\) 栋房子,第 \(i\) 座山是否盖了房子。
那么如果第 \(i\) 座山要盖房子,那么第 \(i\) 座山不会被挖,高度为 \(a_i\);同时,第 \(i-1\) 座山的高度最多为 \(a_i-1\)。但是为了如果第 \(i-2\) 座要盖房子,那么第 \(i-1\) 座山的高度最多为 \(\min(a_{i-2}-1,a_i-1)\);第 \(i-2\) 座山不盖房子时,第 \(i-1\) 座山的高度就只受 \(a_i\) 影响了。
如果第 \(i\) 座山不盖房子,那么考虑第 \(i-1\) 座山盖不盖房子就可以了。如果不盖,直接转移;否则把第 \(i\) 座山拉低到 \(a_{i-1}-1\) 的高度。
此时不考虑对后面的影响,因为我们的阶段就是前 \(i\) 座山。
那么用类似于增量法的思路时就可以当 \(i\) 是 \(n\) 来做,思路会清晰很多。
状态转移方程为
&f[i][j][1]=\begin{aligned}\min(&f[i-2][j-1][0]+\max(0,h[i-1]-h[i]+1),\\\ &f[i-2][j-1][1]+\max(0,h[i-1]-\min(h[i-2],h[i])+1)\end{aligned}\\\
&f[i][j][0]=\begin{aligned}\min(&f[i-1][j][1]+\max(0,h[i]-h[i-1]+1),\\\ &f[i-1][j][0])\end{aligned}
\end{aligned}
\]
最后对于每个 \(k\),输出 \(\min(f[n][k][0],f[n][k][1])\) 即可。
时间复杂度 \(O(n^2)\)。
Code
#include<cstdio>
#include<cstring>
int Min(int x,int y){return x<y?x:y;}
int Max(int x,int y){return x>y?x:y;}
int h[5050];
int f[5050][5050][2];
int main()
{
memset(f,0x3f,sizeof(f));
f[0][0][0]=0;//初始化
f[1][1][1]=0;
f[1][0][0]=0;
int n;
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&h[i]);
h[0]=0x3fffffff;
for(int i=2;i<=n;++i)
{
f[i][0][0]=f[i-1][0][0];
for(int j=1;j<=(i+1)/2;++j)
{
f[i][j][1]=Min(f[i-2][j-1][0]+Max(0,h[i-1]-h[i]+1),
f[i-2][j-1][1]+Max(0,h[i-1]-Min(h[i],h[i-2])+1));
f[i][j][0]=Min(f[i-1][j][0],
f[i-1][j][1]+Max(0,h[i]-h[i-1]+1));
}
}
for(int i=1;i<=(n+1)/2;++i)
printf("%d ",Min(f[n][i][0],f[n][i][1]));
return 0;
}
CF1012C Hills 题解【DP】的更多相关文章
- [FJOI2007]轮状病毒 题解(dp(找规律)+高精度)
[FJOI2007]轮状病毒 题解(dp(找规律)+高精度) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1335733 没什么好说的,直接把规律找出来,有 ...
- 【线型DP】CF1012C Hills 小山坡
来了来了. 题目: 给你n个数,你一次操作可以把某一个数-1(可以减为负数),你的目标是使任意的k个数严格小于它旁边的两个数(第一个数只用严格小于第二个数,第n个数只用严格小于第n-1个数),问最少需 ...
- CF1012C Hills
显然的DP是,dp[i][j][val] val是1e6的 简化 发现,其实决策很有限,最优解的i-1的val选择有限 题解 这里的一个trick是,f[i][j][0]转移不考虑a[i]和a[i-1 ...
- HDU 6787 Chess 2020百度之星 初赛三 T5 题解 dp
传送门:HDU 6787 Chess Problem Description 你现在有一个棋盘,上面有 n 个格子,格子从左往右,1,-,n 进行标号.你可以在棋盘上放置恰好 m 个传送器,并且对于每 ...
- 牛客练习赛69 火柴排队 题解(dp)
题目链接 题目大意 给你一个长为n(n<=5e3)的数组a.随机使得k个元素增加d.要你求多大的概率使得,这些数组元素的相对大小不发生改变 输出 n 行每行一个整数,第 i 行的整数表示 k=i ...
- 古韵之乞巧 题解 dp题
[noip模拟赛1]古韵之乞巧 描述 闺女求天女,更阑意未阑. 玉庭开粉席,罗袖捧金盘. 向月穿针易,临风整线难. 不知谁得巧,明旦试相看. ——祖咏<七夕> 女子乞巧,是七夕的重头戏 ...
- Codeforces 1012C Hills【DP】*
Codeforces 1012C Hills Welcome to Innopolis city. Throughout the whole year, Innopolis citizens suff ...
- Codeforces 691E题解 DP+矩阵快速幂
题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds ...
- Codeforces 833B 题解(DP+线段树)
题面 传送门:http://codeforces.com/problemset/problem/833/B B. The Bakery time limit per test2.5 seconds m ...
随机推荐
- yarn 完美替代 npm
众所周知,npm是nodejs默认的包管理工具,我们通过npm可以下载安装或者发布包,但是npm其实存在着很多小问题,比如安装速度慢.每次都要在线重新安装等,而yarn也正是为了解决npm当前存在的问 ...
- [Selenium]How to click on a hidden link ,move to the drop down menu and click submenu
<table id="_paid_19" class="GOMainTable" cellspacing="0" cellpaddin ...
- PHP性能之语言性能优化:安装VLD扩展——检测性能
使用Linux命令安装 //下载安装包 wget http://pecl.php.net/get/vld-0.14.0.tgz //解压包 tar zxvf vld-0.14.0.tgz //进入编译 ...
- 文件读取草稿(excel,csv)
using NPOI.XSSF.UserModel; using System; using System.Collections.Generic; using System.Data; using ...
- T31P电子秤数据读取
连接串口后先发送"CP\r\n"激活电子秤数据发送,收到的数据包是17字节的 using System; using System.Collections.Generic; usi ...
- UVa 12186 Another Crisis (DP)
题意:有一个老板和n个员工,除了老板每个员工都有唯一的上司,老板编号为0,员工们为1-n,工人(没有下属的员工),要交一份请愿书, 但是不能跨级,当一个不是工人的员工接受到直系下属不少于T%的签字时, ...
- HDU 2044 一只小蜜蜂...(递推,Fibonacci)
题意:中文题. 析:首先要想到达第 n 个蜂房,那么必须经 第 n-1 或第 n-2 个蜂房,那么从第 n-1 或第 n-2 个蜂房到达第 n 个,都各自有一条路线, 所以答案就是第 n-1 + 第 ...
- iOS9 视频播放
self.videoFileURL = [NSURL URLWithString:[NSString stringWithFormat:@"file:///%@", self ...
- SCI EI期刊
coming soon 关键字:Computer Vision, Computing, Image, Intelligence, IEEE, Compution <Journal of Expe ...
- centos 安装 tkinter(不只用来做界面,在pylot中也使用)
Python2 [root@binger ~]# yum -y install tkinter tcl-devel tk-devel [root@binger ~]# rpm -qa | grep ^ ...