http://acm.hdu.edu.cn/showproblem.php?pid=2669
#include <iostream>
using namespace std;

int gcd(int a, int b, int &x, int &y) {
    ) {
        x = , y = ;
        return a;
    }
    int q = gcd(b, a%b, y, x);
    y -= a / b * x;
    return q;
}

int main() {
    int a, b;
    while (scanf("%d%d", &a, &b) != EOF) {
        int x, y;
        )
            cout << "sorry" << endl;
        else {
            ) {
                x += b; y -= a;
            }
            cout << x << " " << y << endl;
        }
    }
    ;
}

这里的x2,y2是递归返回阶段,上一层的y和x,所以代码中的是y-=a/b*x。以21/8为示例,返回阶段递归示意图。

题目要求X必需为非负数,最后这个是很容易忽略掉的,很好看懂,但是写题目的时候没有想到可以这样写。


数论——扩展的欧几里德算法 - HDU2669的更多相关文章

  1. ACM数论之旅4---扩展欧几里德算法(欧几里德(・∀・)?是谁?)

    为什么老是碰上 扩展欧几里德算法 ( •̀∀•́ )最讨厌数论了 看来是时候学一学了 度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相 ...

  2. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  3. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  4. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  5. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  6. poj1061-青蛙的约会(扩展欧几里德算法)

    一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...

  7. HDU 1576 A/B 扩展欧几里德算法

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  8. 欧几里德算法及其扩展(推导&&模板)

    有关欧几里德算法整理: 1.一些相关概念: <1>.整除性与约数: ①一个整数可以被另外一个整数整除即为d|a(表示d整除a,通俗的说是a可以被d整除),其含义也可以说成,存在某个整数k, ...

  9. ACM_扩展欧几里德算法

    <pre name="code" class="cpp">/* 扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表 ...

随机推荐

  1. 标准Trie字典树学习一:原理解析

    特别声明: 博文主要是学习过程中的知识整理,以便之后的查阅回顾.部分内容来源于网络(如有摘录未标注请指出).内容如有差错,也欢迎指正! 系列文章: 1. 字典树Trie学习一:原理解析 2.字典树Tr ...

  2. Linux下ipv6配置系列

    Linux下ipv6配置系列一:如何配置Linux系统ipv6环境 Linux下ipv6配置系列二:如何为Nginx添加ipv6模块 Linux下ipv6配置系列三:如何为Nginx配置IPv6端口监 ...

  3. 《JavaWeb从入门到改行》JSP+EL+JSTL大杂烩汤

    title: Servlet之JSP tags: [] notebook: javaWEB --- JSP是什么 ? JSP就是Servlet,全名是"JavaServer Pages&qu ...

  4. LeetCode ImplementStrstr

    class Solution { public: char *strStr(char *haystack, char *needle) { if (haystack == NULL || needle ...

  5. PoPo数据可视化周刊第2期

    羡辙在bilibili开课啦 就在这个月,不知道是不是受了 @Jannchie见齐 的影响,羡辙竟然在bilibili开授Echarts课程,目前已开课两节. [滚城一团]的 ECharts 训练营 ...

  6. 【Codeforces】Helvetic Coding Contest 2017 online mirror比赛记

    第一次打ACM赛制的团队赛,感觉还行: 好吧主要是切水题: 开场先挑着做五道EASY,他们分给我D题,woc什么玩意,还泊松分布,我连题都读不懂好吗! 果断弃掉了,换了M和J,然后切掉了,看N题: l ...

  7. 洛谷 P2469 [SDOI2010]星际竞速 解题报告

    题目描述 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一,夺得这个项目的冠军无疑是很多人的梦想,来自杰森座α星的悠悠也是其中之一. 赛车大赛的赛场由N颗行星和M条双向星际航路构成,其 ...

  8. tomcat优化记录

    1.使用jdk自带的Jconsole进行可视化查看: 2.使用jmeter做压力测试,做完后有几个重要的指标:正确率.cpu占用率.qps jvm: 3.tomcat server.xml优化: ar ...

  9. ubuntu16下面安装vmware tools后仍然未全屏问题

    1.默认下载ubuntu16的iso镜像后,自带的有vmtools.解压 tar -xzvf  VMwareTools-10.0.6-3595377.tar.gz 进入解压目录. 执行:sudo ./ ...

  10. bootstrap-table sum总数量统计

    写了一个分页要显示数据中所有金额的总数  但是使用 footerformatter  却不知道该怎么赋值   没办法只能放到页脚了 先上个效果图: 这样做要修改源码: bootstrap-table. ...