Java TreeMap实现了SortedMap接口,也就是说会按照key的大小顺序对Map中的元素进行排序,key大小的评判可以通过其本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator)。

TreeMap底层通过红黑树(Red-Black tree)实现,也就意味着containsKey(), get(), put(), remove()都有着log(n)的时间复杂度。其具体算法实现参照了《算法导论》。

出于性能原因,TreeMap是非同步的(not synchronized),如果需要在多线程环境使用,需要程序员手动同步;或者通过如下方式将TreeMap包装成(wrapped)同步的:SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));

红黑二叉树

红黑树是一种近似平衡的二叉查找树,它能够确保任何一个节点的左右子树的高度差不会超过二者中较低那个的一陪。具体来说,红黑树是满足如下条件的二叉查找树(binary search tree):

  1. 每个节点要么是红色,要么是黑色。
  2. 根节点必须是黑色
  3. 红色节点不能连续(也即是,红色节点的孩子和父亲都不能是红色)。
  4. 对于每个节点,从该点至null(树尾端)的任何路径,都含有相同个数的黑色节点。

在树的结构发生改变时(插入或者删除操作),往往会破坏上述条件3或条件4,需要通过调整使得查找树重新满足红黑树的条件。

调整可以分为两类:一类是颜色调整,即改变某个节点的颜色;另一类是结构调整,集改变检索树的结构关系。结构调整过程包含两个基本操作:左旋(Rotate Left),右旋(RotateRight)。

左旋

左旋的过程是将x的右子树绕x逆时针旋转,使得x的右子树成为x的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。

 

TreeMap中左旋代码如下:
//Rotate Left
private void rotateLeft(Entry<K,V> p) {
if (p != null) {
Entry<K,V> r = p.right;
p.right = r.left;
if (r.left != null)
r.left.parent = p;
r.parent = p.parent;
if (p.parent == null)
root = r;
else if (p.parent.left == p)
p.parent.left = r;
else
p.parent.right = r;
r.left = p;
p.parent = r;
}
}

右旋

右旋的过程是将x的左子树绕x顺时针旋转,使得x的左子树成为x的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。

TreeMap中右旋代码如下:
//Rotate Right
private void rotateRight(Entry<K,V> p) {
if (p != null) {
Entry<K,V> l = p.left;
p.left = l.right;
if (l.right != null) l.right.parent = p;
l.parent = p.parent;
if (p.parent == null)
root = l;
else if (p.parent.right == p)
p.parent.right = l;
else p.parent.left = l;
l.right = p;
p.parent = l;
}
}

寻找节点后继

对于一棵二叉查找树,给定节点t,其后继(树中比大于t的最小的那个元素)可以通过如下方式找到:

  1. t的右子树不空,则t的后继是其右子树中最小的那个元素。

  2. t的右孩子为空,则t的后继是其第一个向左走的祖先。

//TreeMap中寻找节点后继的代码
// 寻找节点后继函数successor()
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
if (t == null)
return null;
else if (t.right != null) {// 1. t的右子树不空,则t的后继是其右子树中最小的那个元素
Entry<K,V> p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {// 2. t的右孩子为空,则t的后继是其第一个向左走的祖先
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
}

方法剖析

get()

get(Object key)方法根据指定的key值返回对应的value,该方法调用了getEntry(Object key)得到相应的entry,然后返回entry.value。因此getEntry()是算法的核心。算法思想是根据key的自然顺序(或者比较器顺序)对二叉查找树进行查找,直到找到满足k.compareTo(p.key) == 0的entry。

//getEntry()方法
final Entry<K,V> getEntry(Object key) {
......
if (key == null)//不允许key值为null
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;//使用元素的自然顺序
Entry<K,V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)//向左找
p = p.left;
else if (cmp > 0)//向右找
p = p.right;
else
return p;
}
return null;
}

put()

put(K key, V value)方法是将指定的key, value对添加到map里。该方法首先会对map做一次查找,看是否包含该元组,如果已经包含则直接返回,查找过程类似于getEntry()方法;如果没有找到则会在红黑树中插入新的entry,如果插入之后破坏了红黑树的约束,还需要进行调整(旋转,改变某些节点的颜色)。

public V put(K key, V value) {
......
int cmp;
Entry<K,V> parent;
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;//使用元素的自然顺序
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0) t = t.left;//向左找
else if (cmp > 0) t = t.right;//向右找
else return t.setValue(value);
} while (t != null);
Entry<K,V> e = new Entry<>(key, value, parent);//创建并插入新的entry
if (cmp < 0) parent.left = e;
else parent.right = e;
fixAfterInsertion(e);//调整
size++;
return null;
}

首先在红黑树上找到合适的位置,然后创建新的entry并插入(当然,新插入的节点一定是树的叶子)。难点是调整函数fixAfterInsertion(),1.改变某些节点的颜色,2.对某些节点进行旋转。

调整函数fixAfterInsertion()的具体代码如下,其中用到了rotateLeft()和rotateRight()函数。通过代码我们能够看到,情况2其实是落在情况3内的。情况4~情况6跟前三种情况是对称的,因此图解中并没有画出后三种情况,

//红黑树调整函数fixAfterInsertion()
private void fixAfterInsertion(Entry<K,V> x) {
x.color = RED;
while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
Entry<K,V> y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {//如果y为null,则视为BLACK
setColor(parentOf(x), BLACK); // 情况1
setColor(y, BLACK); // 情况1
setColor(parentOf(parentOf(x)), RED); // 情况1
x = parentOf(parentOf(x)); // 情况1
} else {
if (x == rightOf(parentOf(x))) {
x = parentOf(x); // 情况2
rotateLeft(x); // 情况2
}
setColor(parentOf(x), BLACK); // 情况3
setColor(parentOf(parentOf(x)), RED); // 情况3
rotateRight(parentOf(parentOf(x))); // 情况3
}
} else {
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK); // 情况4
setColor(y, BLACK); // 情况4
setColor(parentOf(parentOf(x)), RED); // 情况4
x = parentOf(parentOf(x)); // 情况4
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x); // 情况5
rotateRight(x); // 情况5
}
setColor(parentOf(x), BLACK); // 情况6
setColor(parentOf(parentOf(x)), RED); // 情况6
rotateLeft(parentOf(parentOf(x))); // 情况6
}
}
}
root.color = BLACK;
}

remove()

remove(Object key)的作用是删除key值对应的entry,该方法首先通过getEntry(Object key)方法找到key值对应的entry,然后调用deleteEntry(Entry<K,V> entry)删除对应的entry。由于删除操作会改变红黑树的结构,有可能破坏红黑树的约束,因此有可能要进行调整。deleteEntry该函数删除指定的entry并在红黑树的约束被破坏时进行调用fixAfterDeletion(Entry<K,V> x)进行调整。

由于红黑树是一棵增强版的二叉查找树,红黑树的删除操作跟普通二叉查找树的删除操作也就非常相似,唯一的区别是红黑树在节点删除之后可能需要进行调整。现在考虑一棵普通二叉查找树的删除过程,可以简单分为两种情况:

  1. 删除点p的左右子树都为空,或者只有一棵子树非空。

  2. 删除点p的左右子树都非空。

对于上述情况1,处理起来比较简单,直接将p删除(左右子树都为空时),或者用非空子树替代p(只有一棵子树非空时);对于情况2,可以用p的后继s(树中大于x的最小的那个元素)代替p,然后使用情况1删除s(此时s一定满足情况1)。

基于以上逻辑,红黑树的节点删除函数deleteEntry()代码如下:

// 红黑树entry删除函数deleteEntry()
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;
if (p.left != null && p.right != null) {// 2. 删除点p的左右子树都非空。
Entry<K,V> s = successor(p);// 后继
p.key = s.key;
p.value = s.value;
p = s;
}
Entry<K,V> replacement = (p.left != null ? p.left : p.right);
if (replacement != null) {// 1. 删除点p只有一棵子树非空。
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement;
p.left = p.right = p.parent = null;
if (p.color == BLACK)
fixAfterDeletion(replacement);// 调整
} else if (p.parent == null) {
root = null;
} else { // 1. 删除点p的左右子树都为空
if (p.color == BLACK)
fixAfterDeletion(p);// 调整
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}

只有删除点是BLACK的时候,才会触发调整函数,因为删除RED节点不会破坏红黑树的任何约束,而删除BLACK节点会破坏规则4。这里也要分成若干种情况。具体的调整操作只有两种:1.改变某些节点的颜色,2.对某些节点进行旋转。

上述图解的总体思想是:将情况1首先转换成情况2,或者转换成情况3和情况4。当然,该图解并不意味着调整过程一定是从情况1开始。通过代码我们能够看到,情况3其实是落在情况4内的。情况5~情况8跟前四种情况是对称的,因此图解中并没有画出后四种情况。通过后续代码我们还会发现几个有趣的规则:

a).如果是由情况1之后紧接着进入的情况2,那么情况2之后一定会退出循环(因为x为红色);

b).一旦进入情况3和情况4,一定会退出循环(因为x为root)。

private void fixAfterDeletion(Entry<K,V> x) {
while (x != root && colorOf(x) == BLACK) {
if (x == leftOf(parentOf(x))) {
Entry<K,V> sib = rightOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK); // 情况1
setColor(parentOf(x), RED); // 情况1
rotateLeft(parentOf(x)); // 情况1
sib = rightOf(parentOf(x)); // 情况1
}
if (colorOf(leftOf(sib)) == BLACK &&
colorOf(rightOf(sib)) == BLACK) {
setColor(sib, RED); // 情况2
x = parentOf(x); // 情况2
} else {
if (colorOf(rightOf(sib)) == BLACK) {
setColor(leftOf(sib), BLACK); // 情况3
setColor(sib, RED); // 情况3
rotateRight(sib); // 情况3
sib = rightOf(parentOf(x)); // 情况3
}
setColor(sib, colorOf(parentOf(x))); // 情况4
setColor(parentOf(x), BLACK); // 情况4
setColor(rightOf(sib), BLACK); // 情况4
rotateLeft(parentOf(x)); // 情况4
x = root; // 情况4
}
} else { // 跟前四种情况对称
Entry<K,V> sib = leftOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK); // 情况5
setColor(parentOf(x), RED); // 情况5
rotateRight(parentOf(x)); // 情况5
sib = leftOf(parentOf(x)); // 情况5
}
if (colorOf(rightOf(sib)) == BLACK &&
colorOf(leftOf(sib)) == BLACK) {
setColor(sib, RED); // 情况6
x = parentOf(x); // 情况6
} else {
if (colorOf(leftOf(sib)) == BLACK) {
setColor(rightOf(sib), BLACK); // 情况7
setColor(sib, RED); // 情况7
rotateLeft(sib); // 情况7
sib = leftOf(parentOf(x)); // 情况7
}
setColor(sib, colorOf(parentOf(x))); // 情况8
setColor(parentOf(x), BLACK); // 情况8
setColor(leftOf(sib), BLACK); // 情况8
rotateRight(parentOf(x)); // 情况8
x = root; // 情况8
}
}
}
setColor(x, BLACK);
}

TreeMap红黑树的更多相关文章

  1. 通过分析 JDK 源代码研究 TreeMap 红黑树算法实现

    本文转载自http://www.ibm.com/developerworks/cn/java/j-lo-tree/ 目录: TreeSet 和 TreeMap 的关系 TreeMap 的添加节点 Tr ...

  2. 研究jdk关于TreeMap 红黑树算法实现

    因为TreeMap的实现方式是用红黑树这种数据结构进行存储的,所以呢我主要通过分析红黑树的实现在看待TreeMap,侧重点也在于如何实现红黑树,因为网上已经有非常都的关于红黑树的实现.我也看了些,但是 ...

  3. 通过分析 JDK 源代码研究 TreeMap 红黑树算法实现--转

    TreeMap 和 TreeSet 是 Java Collection Framework 的两个重要成员,其中 TreeMap 是 Map 接口的常用实现类,而 TreeSet 是 Set 接口的常 ...

  4. TreeMap 红黑树实现

    TreeMap 是一个有序的key-value集合,它是通过 红黑树 实现的. TreeMap 继承于AbstractMap,所以它是一个Map,即一个key-value集合. TreeMap 实现了 ...

  5. 通过分析 JDK 源代码研究 TreeMap 红黑树算法实

    TreeMap和TreeSet是Java Collection Framework的两个重要成员,其中TreeMap是Map接口的常用实现类,而TreeSet是Set接口的常用实现类.虽然HashMa ...

  6. 53 容器(八)——TreeMap 红黑树

    红黑树是比较难以理解的一种数据结构.它能从10亿数据中进行10几次比较就能查找到需要的数据.效率非常高. 理解起内部结构也难. 现阶段我们知道有这种东西就行了. 参考文章: https://www.j ...

  7. 红黑树、TreeMap、TreeSet

    事先声明以下代码基于JDK1.8版本 参考资料 大部分图片引自https://www.jianshu.com/p/e136ec79235c侵删 https://www.cnblogs.com/skyw ...

  8. 【深入理解Java集合框架】红黑树讲解(上)

    来源:史上最清晰的红黑树讲解(上) - CarpenterLee 作者:CarpenterLee(转载已获得作者许可,如需转载请与原作者联系) 文中所有图片点击之后均可查看大图! 史上最清晰的红黑树讲 ...

  9. 大数据学习--day17(Map--HashMap--TreeMap、红黑树)

    Map--HashMap--TreeMap--红黑树 Map:三种遍历方式 HashMap:拉链法.用哈希函数计算出int值. 用桶的思想去存储元素.桶里的元素用链表串起来,之后长了的话转红黑树. T ...

随机推荐

  1. [c# 20问] 1. 何时使用class与struct

    POINTS struct为可以包含数据和函数的值类型 struct为值类型所以不需要堆(heap)而是在栈(stack)上分配空间 struct将数据直接存在struct中,而class只存引用类型 ...

  2. 连接池--sp_reset_connection

    --当客户端使用连接池访问数据库时,客户端使用OPEN来重用数据库连接,使用CLOSE来断开数据库连接,但并不物理上新建和断开连接,因此可以提高程序运行速度并降低性能损耗. --ADO和ADO.NET ...

  3. centos7 安装SSH

    1.安装OpenSSH服务(CentOS系统默认安装了openssh)      yum install openssh-server -y 2.配置OpenSSH服务(默认的配置已可以正常工作) O ...

  4. C#冒泡排序(完整代码)

    百度百科 冒泡排序是笔试面试经常考的内容,虽然它是这些算法里排序速度最慢的 原理:从头开始,每一个元素和它的下一个元素比较,如果它大,就将它与比较的元素交换,否则不动. 这意味着,大的元素总是在向后慢 ...

  5. javacript 实现瀑布流原理和效果, 滚动加载图片【图文解析 附源码】

    先科普下瀑布流吧 瀑布流,又称瀑布流式布局.是比较流行的一种网站页面布局,视觉表现为参差不齐的多栏布局,随着页面滚动条向下滚动,这种布局还会不断加载数据块并附加至当前尾部.最早采用此布局的网站是Pin ...

  6. Sql语法高级应用之一:使用sql语句如何实现不同的角色看到不同的数据

    前言 在常见的管理系统中,通常都有这样的需求,管理员可以看到所有数据,部门可以看到本部门的数据,组长可以看到自己组的数据,组员只能看到自己相关的数据. 一般人的做法是,根据不同的角色通过if...el ...

  7. [SSH]struts2-spring-plugin.jar了解

    在struts2-spring-plugin.jar中有一个struts-plugin.xml,里面声明了action类由spring工厂创建.在struts2插件文档里,这样写着“The Sprin ...

  8. Luogu4551 最长异或路径

    题目链接:戳我 emmmmmmmmmm异或一个数两次等于没有操作对吧...所以我们按照前缀的异或和,建一个01trie.....然后之后.....直接在树上贪心地找能和它每一位不一样的数....然后. ...

  9. 【OCP题库-12c】最新CUUG OCP 071考试题库(71题)

    71.(32-18) choose three Which three statements indicate the end of a transaction? (Choose three.) A) ...

  10. MysqliDb 库的一些使用简单技巧(php)

    一.分页功能 假设接口要接受输入:page, page_limit,key,value,table 来查询 table 中 key like value 的元组中以 page_limit 为 page ...