4-圆数Round Numbers(数位dp)
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 14947 | Accepted: 6023 |
Description
The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first. They can't even flip a coin because it's so hard to toss using hooves.
They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,
otherwise the second cow wins.
A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus, 9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.
Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.
Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).
Input
Output
Sample Input
2 12
Sample Output
6
Source
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int dp[33][64]; //dp[i][j]表示i位数二进制0的个数比1的个数不低于的数的个数
int digit[33]; //二进制数的每一位 int dfs(int pos, int sum, int lead, int limit){
// i, j, 是否有前导0, 取值是否受限
//sum即j表示0比1多的个数
if(pos <= 0){
return sum >= 0;
}
if(!lead && !limit && dp[pos][sum] != -1){
return dp[pos][sum];
}
int rt = 0;
int end = limit ? digit[pos] : 1;
for(int i = 0; i <= end; i++){
if(lead && i == 0){ //有前置0并且当前数位位0,则此0不计数,sum不变
rt += dfs(pos - 1, sum, lead, limit && i == end);
}
else{
rt += dfs(pos - 1, sum + (i ? -1 : 1), lead && i == 0, limit && i == end);
}
}
if(!limit && !lead){
dp[pos][sum] = rt;
}
return rt;
} int solve(int x){
int len = 0;
while(x){
digit[++len] = x & 1;
x = x >> 1;
}
return dfs(len, 0, 1, 1);
} int main(){
int n, m;
memset(dp, -1, sizeof(dp)); cin >> n >> m;
cout << solve(m) - solve(n - 1) << endl; return 0;
}
4-圆数Round Numbers(数位dp)的更多相关文章
- poj 3252 Round Numbers(数位dp 处理前导零)
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- poj3252 Round Numbers (数位dp)
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- POJ3252 Round Numbers —— 数位DP
题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Su ...
- POJ 3252 Round Numbers(数位dp&记忆化搜索)
题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...
- poj 3252 Round Numbers 数位dp
题目链接 找一个范围内二进制中0的个数大于等于1的个数的数的数量.基础的数位dp #include<bits/stdc++.h> using namespace std; #define ...
- Round Numbers(数位DP)
Round Numbers http://poj.org/problem?id=3252 Time Limit: 2000MS Memory Limit: 65536K Total Submiss ...
- 【poj3252】 Round Numbers (数位DP+记忆化DFS)
题目大意:给你一个区间$[l,r]$,求在该区间内有多少整数在二进制下$0$的数量$≥1$的数量.数据范围$1≤l,r≤2*10^{9}$. 第一次用记忆化dfs写数位dp,感觉神清气爽~(原谅我这个 ...
- POJ - 3252 - Round Numbers(数位DP)
链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...
- $POJ$3252 $Round\ Numbers$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$w$ 沉迷写博客,,,不想做题,,,$QAQ$口胡一时爽一直口胡一直爽$QAQ$ 先港下题目大意嗷$QwQ$大概就说,给定区间$[l,r]$,求区间内满足二进制 ...
随机推荐
- udev笔记
1.udevd的主配置文件是/etc/udev/udev.conf 2.使用udev来监听U的hot-plug事件 #include <stdio.h> #include <stdl ...
- 【转】Linux 图形界面与命令行模式切换
原文网址:http://blog.csdn.net/ldl22847/article/details/7600368 Tip:使用环境VMware Workstation OS:CentOS 6 ...
- java 线程池 ExeutorService
Java线程池 ExecutorService 原文:https://blog.csdn.net/suifeng3051/article/details/49443835/ 本篇主要涉及到的是java ...
- tomcat启动时SessionIdGeneratorBase.createSecureRandom耗时5分钟的问题
通常情况下,tomcat启动只要2~3秒钟,突然有一天,tomcat启动非常慢,要花5~6分钟,查了很久,终于在这篇文章找到了解决方案,博主牛人啊. 原文参见:http://blog.csdn.net ...
- Go语言并发编程总结
转自:http://blog.csdn.net/yue7603835/article/details/44309409 Golang :不要通过共享内存来通信,而应该通过通信来共享内存.这句风靡在Go ...
- Mysql 授权远程访问
1.表示从任何主机连接到mysql服务器 GRANT ALL PRIVILEGES ON *.* TO 'user'@'%' IDENTIFIED BY 'password' WITH GRANT O ...
- ffmpeg重要的参考学习网址
http://lib.csdn.net/liveplay/knowledge/1586 FFmpeg滤镜使用指南 http://blog.csdn.net/fireroll/article/detai ...
- Carrying per-request context using the HttpRequestMessage.Properties
In a Web API application, I use Castle Windsor to supply services configured with PerWebRequest life ...
- oracle事务知识点小结
DML语句流程 1 获取事务锁和ITL2 锁定候选行3 生成redo4 生成undo5 生成redo record写入log buffer并更改数据块 事务提交1 分配SCN2 更新事务表,将事务槽状 ...
- C#遍历XmlDocument对象所有节点名称、类型、属性(Attribute)
C#遍历XmlDocument对象所有节点名称.类型.属性(Attribute) 源码下载 代码 static void Main(string[] args) { System.Xml.XmlDoc ...