4-圆数Round Numbers(数位dp)
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 14947 | Accepted: 6023 |
Description
The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first. They can't even flip a coin because it's so hard to toss using hooves.
They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,
otherwise the second cow wins.
A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus, 9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.
Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.
Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).
Input
Output
Sample Input
2 12
Sample Output
6
Source
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int dp[33][64]; //dp[i][j]表示i位数二进制0的个数比1的个数不低于的数的个数
int digit[33]; //二进制数的每一位 int dfs(int pos, int sum, int lead, int limit){
// i, j, 是否有前导0, 取值是否受限
//sum即j表示0比1多的个数
if(pos <= 0){
return sum >= 0;
}
if(!lead && !limit && dp[pos][sum] != -1){
return dp[pos][sum];
}
int rt = 0;
int end = limit ? digit[pos] : 1;
for(int i = 0; i <= end; i++){
if(lead && i == 0){ //有前置0并且当前数位位0,则此0不计数,sum不变
rt += dfs(pos - 1, sum, lead, limit && i == end);
}
else{
rt += dfs(pos - 1, sum + (i ? -1 : 1), lead && i == 0, limit && i == end);
}
}
if(!limit && !lead){
dp[pos][sum] = rt;
}
return rt;
} int solve(int x){
int len = 0;
while(x){
digit[++len] = x & 1;
x = x >> 1;
}
return dfs(len, 0, 1, 1);
} int main(){
int n, m;
memset(dp, -1, sizeof(dp)); cin >> n >> m;
cout << solve(m) - solve(n - 1) << endl; return 0;
}
4-圆数Round Numbers(数位dp)的更多相关文章
- poj 3252 Round Numbers(数位dp 处理前导零)
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- poj3252 Round Numbers (数位dp)
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- POJ3252 Round Numbers —— 数位DP
题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Su ...
- POJ 3252 Round Numbers(数位dp&记忆化搜索)
题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...
- poj 3252 Round Numbers 数位dp
题目链接 找一个范围内二进制中0的个数大于等于1的个数的数的数量.基础的数位dp #include<bits/stdc++.h> using namespace std; #define ...
- Round Numbers(数位DP)
Round Numbers http://poj.org/problem?id=3252 Time Limit: 2000MS Memory Limit: 65536K Total Submiss ...
- 【poj3252】 Round Numbers (数位DP+记忆化DFS)
题目大意:给你一个区间$[l,r]$,求在该区间内有多少整数在二进制下$0$的数量$≥1$的数量.数据范围$1≤l,r≤2*10^{9}$. 第一次用记忆化dfs写数位dp,感觉神清气爽~(原谅我这个 ...
- POJ - 3252 - Round Numbers(数位DP)
链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...
- $POJ$3252 $Round\ Numbers$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$w$ 沉迷写博客,,,不想做题,,,$QAQ$口胡一时爽一直口胡一直爽$QAQ$ 先港下题目大意嗷$QwQ$大概就说,给定区间$[l,r]$,求区间内满足二进制 ...
随机推荐
- 阿里云windows时间同步服务地址
偶然发现的, 记录一下 ntp1.aliyun.com
- notification的创建及应用
之前我用了button.setonclicklistener来获取一个点击事件,但是在new notificationcompat.builder是会报一个没有定义的错误.这种点击事件的方式就不会报那 ...
- CF1076E:Vasya and a Tree(DFS&差分)
Vasya has a tree consisting of n n vertices with root in vertex 1 1 . At first all vertices has 0 0 ...
- SpringBoot实现网站注册,邮件激活码激活功能
项目源码:https://gitee.com/smfx1314/springbootemail 上一篇文章已经讲到如何springboot如何实现邮件的发送,趁热打铁,这篇文章实现如下功能. 很多网站 ...
- 好的框架需要好的 API 设计 —— API 设计的六个原则
说到框架设计,打心底都会觉得很大很宽泛,而 API 设计是框架设计中的重要组成部分.相比于有很多大佬都认可的面向对象的六大原则.23 种常见的设计模式来说,API 设计确实缺少行业公认的原则或者说设计 ...
- office 2013母版保存并调用
如果觉得某个ppt的母版不错,想保存下来以后使用的话,那么执行 开始->另存为-> 选择位置和格式,注意格式选择potx. 之后如果想要使用这组母版,怎么办呢? 浏览主题,打开之前保存的 ...
- Armadillo安装及使用
以下转载自http://www.cnblogs.com/youthlion/archive/2012/05/15/2501465.html Armadillo是一个C++开发的线性代数库,在vs201 ...
- ASI和TS流有什么区别
TS流是信源码流,最高码率为44.209 Mbit/s,它是经过信源编码后的压缩码流,为了使欲传输的信源信息在传输速率一定的条件下更快更多地传输,还要把数据进行压缩,也就是通过信源编码去掉信息中多余的 ...
- java web 程序---内置对象application的log方法的使用
application的主要方法里,有log方法,是日志文件里可以查看到信息的. 当老师写好代码后,他发现在tomact里的log目录下找不到信息,原因是:我们用myeclipse这个客户端软件,应该 ...
- Git 安装部署
CentOS6的yum源中已经有git的版本了,可以直接使用yum源进行安装. yum install/remove git 但是yum源中安装的git版本是1.7.1,太老了,Github等需要的G ...