传送门

利用Cayley-Hamilton定理,用插值法求出特征多项式 \(P(x)\)

然后 \(M^n\equiv M^n(mod~P(x))(mod~P(x))\)

然后就多项式快速幂+取模

最后得到了一个关于 \(M\) 的多项式,代入 \(M^i\) 即可

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; const int mod(1e9 + 7); inline int Pow(ll x, int y) {
register ll ret = 1;
for (; y; y >>= 1, x = x * x % mod)
if (y & 1) ret = ret * x % mod;
return ret;
} inline void Inc(int &x, int y) {
x = x + y >= mod ? x + y - mod : x + y;
} inline int Dec(int x, int y) {
return x - y < 0 ? x - y + mod : x - y;
} int n, m, a[55][55], b[55][55], mt[55][55], tmt[55][55], len, c[55], d[55], p[55], tmp[105], yi[55];
char str[10005]; inline int Gauss() {
register int i, j, k, inv, ans = 1;
for (i = 1; i <= n; ++i) {
for (j = i; j <= n; ++j)
if (b[j][i]) {
if (i != j) swap(b[i], b[j]), ans = mod - ans;
break;
}
for (j = i + 1; j <= n; ++j)
if (b[j][i]) {
inv = (ll)b[j][i] * Pow(b[i][i], mod - 2) % mod;
for (k = i; k <= n; ++k) Inc(b[j][k], mod - (ll)b[i][k] * inv % mod);
}
ans = (ll)ans * b[i][i] % mod;
}
return ans;
} inline void Mul(int *x, int *y, int *z) {
register int i, j, inv;
memset(tmp, 0, sizeof(tmp));
for (i = 0; i <= n; ++i)
for (j = 0; j <= n; ++j) Inc(tmp[i + j], (ll)x[i] * y[j] % mod);
for (i = m; i >= n; --i) {
inv = (ll)tmp[i] * Pow(p[n], mod - 2);
for (j = 0; j <= n; ++j) Inc(tmp[i - j], mod - (ll)p[n - j] * inv % mod);
}
for (i = 0; i <= n; ++i) z[i] = tmp[i];
} int main() {
register int i, j, k, l, inv;
scanf(" %s%d", str + 1, &n), len = strlen(str + 1), m = n << 1;
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j) scanf("%d", &a[i][j]);
for (i = 0; i <= n; ++i) {
memset(b, 0, sizeof(b));
for (j = 1; j <= n; ++j)
for (k = 1; k <= n; ++k)
b[j][k] = (j ^ k) ? mod - a[j][k] : Dec(i, a[j][k]);
yi[i] = Gauss();
}
for (i = 0; i <= n; ++i) {
memset(tmp, 0, sizeof(tmp)), tmp[0] = yi[i];
for (j = 0; j <= n; ++j)
if (j ^ i) {
for (k = n; k; --k) tmp[k] = Dec(tmp[k - 1], (ll)tmp[k] * j % mod);
tmp[0] = mod - (ll)tmp[0] * j % mod, inv = Pow(Dec(i, j), mod - 2);
for (k = 0; k <= n; ++k) tmp[k] = (ll)tmp[k] * inv % mod;
}
for (j = 0; j <= n; ++j) Inc(p[j], tmp[j]);
}
c[0] = d[1] = 1;
for (i = len; i; --i) {
if (str[i] == '1') Mul(c, d, c);
Mul(d, d, d);
}
memset(b, 0, sizeof(b));
for (i = 1; i <= n; ++i) mt[i][i] = 1;
for (l = 0; l <= n; ++l) {
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
Inc(b[i][j], (ll)c[l] * mt[i][j] % mod);
memset(tmt, 0, sizeof(tmt));
for (i = 1; i <= n; ++i)
for (j = 1; j <= n; ++j)
for (k = 1; k <= n; ++k)
Inc(tmt[i][k], (ll)mt[i][j] * a[j][k] % mod);
memcpy(mt, tmt, sizeof(mt));
}
for (i = 1; i <= n; ++i, putchar('\n'))
for (j = 1; j <= n; ++j) printf("%d ", b[i][j]);
return 0;
}

BZOJ4162:shlw loves matrix II的更多相关文章

  1. [bzoj4162]shlw loves matrix II

    来自FallDream的博客,未经允许,请勿转载,谢谢 给定矩阵k*k的矩阵M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出. k<=50 n<=2^10000 考 ...

  2. [BZOJ]4162: shlw loves matrix II

    Time Limit: 30 Sec  Memory Limit: 128 MB Description 给定矩阵 M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出. Inpu ...

  3. [bzoj4161]Shlw loves matrix I

    来自FallDream的博客,未经允许,请勿转载,谢谢. 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1 ...

  4. 【leetcode】Spiral Matrix II

    Spiral Matrix II Given an integer n, generate a square matrix filled with elements from 1 to n2 in s ...

  5. 59. Spiral Matrix && Spiral Matrix II

    Spiral Matrix Given a matrix of m x n elements (m rows, n columns), return all elements of the matri ...

  6. Search a 2D Matrix | & II

    Search a 2D Matrix II Write an efficient algorithm that searches for a value in an m x n matrix, ret ...

  7. hdu 5265 pog loves szh II STL

    pog loves szh II Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...

  8. LintCode 38. Search a 2D Matrix II

    Write an efficient algorithm that searches for a value in an m x n matrix, return the occurrence of ...

  9. leetcode 54. Spiral Matrix 、59. Spiral Matrix II

    54题是把二维数组安卓螺旋的顺序进行打印,59题是把1到n平方的数字按照螺旋的顺序进行放置 54. Spiral Matrix start表示的是每次一圈的开始,每次开始其实就是从(0,0).(1,1 ...

随机推荐

  1. Enum枚举法

    java enum(枚举)使用详解 + 总结   enum 的全称为 enumeration, 是 JDK 1.5  中引入的新特性,存放在 java.lang 包中. 下面是我在使用 enum 过程 ...

  2. pickle 模块学习 常用方法

    内容提要: 1: pickle的主要作用 pickle主要用于python 于python 之间进行文件传出,网络传输 他同json 一样也是有4个函数 pickle.dumps(iterable)  ...

  3. 考试题 T3

    题意分析 首先\(\%\%\%\%olinr\)以及花_Q\(julao\)当场切题 然后就是怎么求 \[max(|a-A|,|b-B|)=max(a-A,A-a,B-b,b-B)\] 我们令\(x_ ...

  4. leetcode-73-矩阵置零

    题目描述:   给定一个 m x n 的矩阵,如果一个元素为 0,则将其所在行和列的所有元素都设为 0.请使用原地算法. 示例 1: 输入: [   [1,1,1],   [1,0,1],   [1, ...

  5. day2: python3.5学习——逻辑判断

    1. 简单的用户名和密码输入 username = "Helen"password = "123abc" _username = input("use ...

  6. 本地搭建sass运行环境

    1.安装node.js 安装文件为msi文件,可到node.js官网下载安装包,下载路径为:https://nodejs.org/en/download/ 安装路径为默认路径,安装完成之后配置环境变量 ...

  7. javascript的简单查询和插入和修改

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...

  8. Array对象的判定

    /* 关于JS对象类型的判断,最复杂的在于RegExp和Array了,判定RegExp的情形不较少,而Array就比较多了,下面就是判断Array的方法 */ //方法一:利用instanceof来判 ...

  9. python-Lock锁线程同步和互斥

    #!/usr/bin/python #coding=utf-8 #线程间通信的同步与互斥操作-锁 import threading a=b=0 lock=threading.Lock() def va ...

  10. python-Lock进程同步解决互斥

    #!/usr/bin/python from multiprocessing import Process,Lock import time,sys def A(lock): with lock: f ...