题意

你要用 \(ATGC\) 四个字母用两种操作拼出给定的串:

  1. 将其中一个字符放在已有串开头或者结尾
  2. 将已有串复制,然后 \(reverse\) ,再接在已有串的头部或者尾部

一开始已有串为空。求最少操作次数。

\(len\le100000\)

Sol

首先有个结论

每次形成偶数长度回文串的最后一步一定是操作 \(2\)

那么考虑一个 \(DP\)

设 \(f[i]\) 表示形成 \(i\) 表示的字符串需要的最少步数

可以去掉首和尾转移来,可以由它的一个前缀或者后缀转移来

如果是个偶数长度的字符串

可以由某个长度小于等于它一半的字符串增长到它的长度后翻倍而来

可以由它去掉首尾的串一步转移而来,因为去掉首位仍然是偶数长度而且形成偶数长度回文串的最后一步一定是操作 \(2\)

那么直接用回文树实现

求某个长度小于等于它一半的字符串直接建树的时候暴力跳一下(雾

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} const int maxn(1e5 + 5); int f[maxn], son[4][maxn], trans[666], half[maxn], len[maxn], fa[maxn], num[maxn], tot, last, pre[maxn];
char s[maxn]; IL void Init(){
for(RG int i = 0; i <= tot; ++i){
len[i] = fa[i] = half[i] = 0;
for(RG int j = 0; j < 4; ++j) son[j][i] = 0;
}
fa[0] = fa[1] = 1, len[1] = -1, tot = 1, last = 0;
} IL void Extend(RG int pos, RG int c){
RG int p = last;
while(s[pos - len[p] - 1] != s[pos]) p = fa[p];
if(!son[c][p]){
RG int np = ++tot, q = fa[p];
while(s[pos - len[q] - 1] != s[pos]) q = fa[q];
len[np] = len[p] + 2, fa[np] = son[c][q];
son[c][p] = np, pre[np] = p;
if(s[pos - len[half[p]] - 1] == s[pos]) half[np] = son[c][half[p]];
else half[np] = fa[np];
while((len[half[np]] << 1) > len[np]) half[np] = fa[half[np]];
}
last = son[c][p];
} int main(){
trans['C'] = 1, trans['G'] = 2, trans['T'] = 3;
for(RG int t = Input(), n = 0; t; --t){
Init(), scanf(" %s", s + 1), n = strlen(s + 1);
for(RG int i = 1; i <= n; ++i) Extend(i, trans[s[i]]);
RG int ans = n;
for(RG int i = 2; i <= tot; ++i){
f[i] = min(len[i], f[fa[i]] + len[i] - len[fa[i]]);
if(len[i] & 1) f[i] = min(f[pre[i]] + 2, f[i]);
else{
f[i] = min(f[i], pre[i] ? f[pre[i]] + 1 : 2);
f[i] = min(f[i], f[half[i]] + (len[i] >> 1) - len[half[i]] + 1);
}
ans = min(ans, f[i] + n - len[i]);
}
printf("%d\n", ans);
}
return 0;
}

Bzoj4044 Virus synthesis的更多相关文章

  1. [BZOJ4044]Virus synthesis 回文自动机的DP

    4044: [Cerc2014] Virus synthesis Time Limit: 20 Sec  Memory Limit: 128 MB Description Viruses are us ...

  2. bzoj4044/luoguP4762 [Cerc2014]Virus synthesis(回文自动机+dp)

    bzoj4044/luoguP4762 [Cerc2014]Virus synthesis(回文自动机+dp) bzoj Luogu 你要用ATGC四个字母用两种操作拼出给定的串: 1.将其中一个字符 ...

  3. luogu_4762: [CERC2014]Virus synthesis

    洛谷_4762:[CERC2014]Virus synthesis 题目描述: 初始有一个空串,利用下面的操作构造给定串\(S\).\(len(S)\leq10^5\) 1: 串开头或末尾加一个字符. ...

  4. LG4762 Virus synthesis

    Virus synthesis 初始有一个空串,利用下面的操作构造给定串 S . 串开头或末尾加一个字符 串开头或末尾加一个该串的逆串 求最小化操作数, ∣S∣≤105 . 题解 显然应该多使用操作2 ...

  5. [CERC2014]Virus synthesis【回文自动机+DP】

    [CERC2014]Virus synthesis 初始有一个空串,利用下面的操作构造给定串 SS . 1.串开头或末尾加一个字符 2.串开头或末尾加一个该串的逆串 求最小化操作数, \(|S| \l ...

  6. bzoj4044 [Cerc2014] Virus synthesis

    回文自动机上dp f[x]表示形成x代表的回文串所需的最小步数, 若len[x]为奇数,f[x]=len[x],因为即使有更优的,也是直接添加,没有复制操作,那样就不用从x转移了. 若len[x]为偶 ...

  7. BZOJ4044: [Cerc2014] Virus synthesis(回文树+DP)

    Description Viruses are usually bad for your health. How about fighting them with... other viruses? ...

  8. [CERC2014] Virus synthesis

    设f[i]为形成极长回文串i的最小操作数.答案为min f[i]+n-len[i]. 在不形成偶回文的情况下形成奇回文的最小操作数为该串长度.可以不考虑(但ans赋为len). 正确性基于: 1)奇. ...

  9. Codeforces Gym100543G Virus synthesis 字符串 回文自动机 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF-100543G.html 题目传送门 - CF-Gym100543G 题意 你可以对一个字符串进行以下两种操 ...

随机推荐

  1. Git从码云或者Github 克隆代码到本地

    Git从码云或者Github 克隆代码到本地 1.下载安装Git,傻瓜式下一步下一步即可... 2.配置Git: 2.1.选择你要clone到本地的路径:右键--->$ Git Bash Her ...

  2. sele nium 模块

    python3 web测试模块selenium   阅读目录 1.selenium安装配置 2.Selenium的基本使用 (1)声明浏览器对象 (2)定位元素 (3)元素对象(element) (4 ...

  3. 永久激活navicat_premium12.0,支持win32和64位

    1.下载软件以及注册机 链接:https://pan.baidu.com/s/1NGc6YLsgMQRQYEwnGSU16Q   提取码:guno 2.根据自己的电脑位数安装对应的软件,傻瓜式安全(注 ...

  4. 2016级算法第六次上机-F.AlvinZH的学霸养成记VI

    1082 AlvinZH的学霸养成记VI 思路 难题,凸包. 分析问题,平面上给出两类点,问能否用一条直线将二者分离. 首先应该联想到这是一个凸包问题,分别计算两类点的凸包,如果存在符合题意的直线,那 ...

  5. 功能一: 数据库访问DAO层方法定义

    功能1: 今天到现在为止 实战课程的访问量 yyyyMMdd courseID 使用数据库来进行存储我们的统计结果 Spark Streaming把统计结果写入到数据库里面 可视化前端根据: yyyy ...

  6. Q712 两个字符串的最小ASCII删除和

    给定两个字符串s1, s2,找到使两个字符串相等所需删除字符的ASCII值的最小和. 示例 1: 输入: s1 = "sea", s2 = "eat" 输出: ...

  7. mono修改代码模板

    新建android application是在这里修改模板D:\prostu\Microsoft Visual Studio 10.0\Common7\IDE\ProjectTemplatesCach ...

  8. 很乱,临时保存,自定义v-model

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...

  9. devise在引擎中安装后,设置访问自定义页面

    rails generate devise:views User Turn on scoped_views in config/initializer/devise.rb view config.sc ...

  10. Struts2 Validate

    1.自定义action继承ActionSupport 2.复写validate方法,因为ActionSupport实现了Validate这个借口,而这个借口中定义了validate方法 3.当请求时, ...