题目描述

求长度为 $n$ 的序列,每个数都是 $|S|$ 中的某一个,所有数的乘积模 $m$ 等于 $x$ 的序列数目模1004535809的值。

输入

一行,四个整数,N、M、x、|S|,其中|S|为集合S中元素个数。
第二行,|S|个整数,表示集合S中的所有元素。
1<=N<=10^9,3<=M<=8000,M为质数
1<=x<=M-1,输入数据保证集合S中元素不重复

输出

一行,一个整数,表示你求出的种类数mod 1004535809的值。

样例输入

4 3 1 2
1 2

样例输出

8


题解

原根+NTT

如果条件是和模 $m$ 等于 $x$ ,那么很明显就是一道NTT裸题。维护S集合的生成函数在模 $x^m$ 意义下的 $n$ 次幂即可。

然而本题的条件是乘积。可以求出 $m$ 的原根,对每个数取指标,那么原数相乘就变为指标相加,使用NTT快速幂即可。

求原根的过程可以直接暴力。

注意 $|S|$ 集合中的数可能有0,0是没有指标的。由于 $x\neq 0$ ,因此出现0时无意义,直接忽略这个数即可。

时间复杂度 $O(m\log^2n)$

#include <cstdio>
#include <algorithm>
#define N 16410
#define mod 1004535809
using namespace std;
typedef long long ll;
int m , s[N >> 1] , v[15] , tot , ind[N >> 1];
ll a[N] , ans[N];
inline ll pow(ll x , int y , ll m)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % m;
x = x * x % m , y >>= 1;
}
return ans;
}
int getroot()
{
int i , j , t = m - 1;
for(i = 2 ; i * i <= t ; i ++ )
{
if(t % i == 0)
{
v[++tot] = i;
while(t % i == 0) t /= i;
}
}
if(t != 1) v[++tot] = t;
for(i = 2 ; i < m ; i ++ )
{
for(j = 1 ; j <= tot ; j ++ )
if(pow(i , (m - 1) / v[j] , m) == 1)
break;
if(j > tot) return i;
}
return 0;
}
void ntt(ll *a , int n , int flag)
{
int i , j , k;
for(k = i = 0 ; i < n ; i ++ )
{
if(i > k) swap(a[i] , a[k]);
for(j = (n >> 1) ; (k ^= j) < j ; j >>= 1);
}
for(k = 2 ; k <= n ; k <<= 1)
{
ll wn = pow(3 , (mod - 1) / k , mod);
if(flag == -1) wn = pow(wn , mod - 2 , mod);
for(i = 0 ; i < n ; i += k)
{
ll w = 1 , t;
for(j = i ; j < i + (k >> 1) ; j ++ , w = w * wn % mod)
t = w * a[j + (k >> 1)] % mod , a[j + (k >> 1)] = (a[j] - t + mod) % mod , a[j] = (a[j] + t) % mod;
}
}
if(flag == -1)
{
k = pow(n , mod - 2 , mod);
for(i = 0 ; i < n ; i ++ ) a[i] = a[i] * k % mod;
for(i = m - 1 ; i < n ; i ++ ) a[i % (m - 1)] = (a[i % (m - 1)] + a[i]) % mod , a[i] = 0;
}
}
void Pow(int y , int n)
{
int i;
ans[0] = 1;
while(y)
{
ntt(a , n , 1);
if(y & 1)
{
ntt(ans , n , 1);
for(i = 0 ; i < n ; i ++ ) ans[i] = ans[i] * a[i] % mod;
ntt(ans , n , -1);
}
for(i = 0 ; i < n ; i ++ ) a[i] = a[i] * a[i] % mod;
ntt(a , n , -1);
y >>= 1;
}
}
int main()
{
int n , x , k , i , r , t , len = 1;
scanf("%d%d%d%d" , &n , &m , &x , &k);
for(i = 1 ; i <= k ; i ++ ) scanf("%d" , &s[i]);
r = getroot();
for(t = 1 , i = 0 ; i < m - 1 ; i ++ , t = t * r % m) ind[t] = i;
for(i = 1 ; i <= k ; i ++ )
if(s[i])
a[ind[s[i]]] ++ ;
while(len <= 2 * (m - 2)) len <<= 1;
Pow(n , len);
printf("%lld\n" , ans[ind[x]]);
return 0;
}

【bzoj3992】[SDOI2015]序列统计 原根+NTT的更多相关文章

  1. [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Statu ...

  2. BZOJ3992: [SDOI2015]序列统计(NTT 原根 生成函数)

    题意 题目链接 给出大小为\(S\)的集合,从中选出\(N\)个数,满足他们的乘积\(\% M = X\)的方案数 Sol 神仙题Orz 首先不难列出最裸的dp方程,设\(f[i][j]\)表示选了\ ...

  3. 【BZOJ3992】【SDOI2015】序列统计 原根 NTT

    题目大意 有一个集合\(s\),里面的每个数都\(\geq0\)且\(<m\). 问有多少个长度为\(n\)的数列满足这个数列所有数的乘积模\(m\)为\(x\).答案模\(1004535809 ...

  4. BZOJ.3992.[SDOI2015]序列统计(DP NTT 原根)

    题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\).求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数.其中\(a_i\in S\). ...

  5. 【NTT】bzoj3992: [SDOI2015]序列统计

    板子题都差点不会了 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生 ...

  6. 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)

    传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1​,a2​,...as​},所有数都在[0,m−1][0,m-1][0,m− ...

  7. BZOJ3992: [SDOI2015]序列统计

    Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列. ...

  8. BZOJ3992 [SDOI2015]序列统计 【生成函数 + 多项式快速幂】

    题目 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题 ...

  9. 洛谷P3321 [SDOI2015]序列统计(NTT)

    传送门 题意:$a_i\in S$,求$\prod_{i=1}^na_i\equiv x\pmod{m}$的方案数 这题目太珂怕了……数学渣渣有点害怕……kelin大佬TQL 设$f[i][j]$表示 ...

随机推荐

  1. [hdu6051]If the starlight never fade-[欧拉函数+原根]

    Description 传送门 Solution orz大佬yxq..本题神仙 设g为P的原根. 设$x=g^{a}$,$y=g^{b}$. 由于$(g^{a}+g^{b})^{i}\equiv (g ...

  2. Drupal学习(19) 使用jQuery

    本节学习如果在Drupal里交互使用jQuery. jQuery在Drupal是内置支持的.存在根目录的misc目录中. 当调用drupal_add_js方法,会自动加载jQuery. 在Drupal ...

  3. 二、Web框架实现

    一.简单web(socket) 在前一篇WEB框架概述一文中已经详细了解了:从浏览器键入一个URL到返回HTML内容的整个过程.说到底,本质上其实就是一个socket服务端,用户的浏览器其实就是一个s ...

  4. 一步步带你配置IIS(包括错误分析)

    今天趁着工作中的问题一下子来解决IIS配置 发布网站:点击VS发布网站 第一步:新建配置文件(我取名为webSite) : 第二步:选择发布方法并且选择把文件发布到哪里(比喻在D盘创建一个文件夹web ...

  5. Java 验证码识别库 Tess4j 学习

    Java 验证码识别库 Tess4j 学习 [在用java的Jsoup做爬虫爬取数据时遇到了验证码识别的问题(基于maven),找了网上挺多的资料,发现Tess4j可以自动识别验证码,在这里简单记录下 ...

  6. MySQL数据库--连接

    MySQL数据库的概念: MySQL数据库,包括客户端和服务端.客户端就是操作数据库的终端(命令行.navicat),服务端就是安装有MySQL软件的主机(本机或者服务器),MySQL数据库的端口一般 ...

  7. NO.04--我的使用心得之使用vue绑定class名

    今天聊一聊这个话题,其实方式有很多种,我今天介绍几种我使用到的,各位看官耐心看: 一.用 变量形式 绑定单个 Class 名 在 vue 中绑定单个 class 名还好说,直接写就可以了 <te ...

  8. Matplotlib用法

    一 环境安装 Make sure you have installed numpy. 先安装np pip install matplotlib (Python2.X) pip3 install mat ...

  9. Dilworth定理

    来自网络的解释: 定理内容及其证明过程数学不好看不懂. 通俗解释: 把一个数列划分成最少的最长不升子序列的数目就等于这个数列的最长上升子序列的长度(LIS) EXAMPLE 1   HDU 1257 ...

  10. Method 'ExecuteAsync' in type 'System.Data.Entity.SqlServer.DefaultSqlExecutionStrategy' does not have an implementation

    一.错误信息 Entity Framework 6.0数据迁移:Add-Migration XXXX 命令发生错误 System.Reflection.TargetInvocationExceptio ...