http://acm.hdu.edu.cn/showproblem.php?pid=1421

搬寝室

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 27846    Accepted Submission(s): 9587

Problem Description
搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆,因为n是一个小于2000的整数,实在是太多了,于是xhd决定随便搬2*k件过去就行了.但还是会很累,因为2*k也不小是一个不大于n的整数.幸运的是xhd根据多年的搬东西的经验发现每搬一次的疲劳度是和左右手的物品的重量差的平方成正比(这里补充一句,xhd每次搬两件东西,左手一件右手一件).例如xhd左手拿重量为3的物品,右手拿重量为6的物品,则他搬完这次的疲劳度为(6-3)^2 = 9.现在可怜的xhd希望知道搬完这2*k件物品后的最佳状态是怎样的(也就是最低的疲劳度),请告诉他吧.
 
Input
每组输入数据有两行,第一行有两个数n,k(2<=2*k<=n<2000).第二行有n个整数分别表示n件物品的重量(重量是一个小于2^15的正整数).
 
Output
对应每组输入数据,输出数据只有一个表示他的最少的疲劳度,每个一行.
 
Sample Input
2 1
1 3
 
Sample Output
4
 
Author
xhd
 
Source
 
Recommend
lcy
 
 
动态规划问题的关键是寻找状态以及状态转移方程。这里令dp[i][j]表示在前j件物品中选取i对物品时的最小疲劳值。
其次是如何选取的问题。
注意到任意选择一对物品,其累积的疲劳值为两个物品重量差的平方,在所有被选择的物品中任选两对,假设四个物品的重量分别为a,b,c,d(a<=b<=c<=d),
此时,可能存在两种配对方案,ab\cd一组,ac\bd一组。可以证明前一种配对方案的疲劳值必不大于后一种。
因此,决定将所有物品按照重量升序排列。在选定的最佳方案中,任意选择两对组合,必定是最小与次小组合,最大与次大组合。
又当两个物品的重量差越小时,疲劳值越小。所以选择的物品必定是相邻的。
 
这样,就可以比较容易得到状态的转移方程:
如果物品j与物品j-1配对,那么dp[i][j]=dp[i-1][j-2]+(list[j]-list[j-1])^2;
否则,dp[i][j]=dp[i][j-1]
选择上述两者中的最小值。
 
代码如下:
 #include <stdio.h>
#include<algorithm>> using namespace std; int dp[][];
const int INF=0x7ffffff;
int list[]; int main()
{
int n,k;
while(scanf("%d %d", &n, &k)!=EOF)
{
for(int i=; i<=n; i++)
{
scanf("%d", &list[i]);
} sort(list+, list++n);
for(int i=; i<=n; i++)
{
dp[][i]=; //前i件物品中选择0件物品的疲劳度=0;
} for(int i=; i<=k; i++)
for(int j=i*; j<=n; j++)
{
if(j>i*)
dp[i][j]=dp[i][j-]; //j>2*i 表明最后两个物品不配对,那么dp[i][j]等价于dp[i][j-1]
else
dp[i][j]=INF; //最后两个物品配对,先令其为一个大数 if(dp[i][j] > dp[i-][j-]+ (list[j]-list[j-])*(list[j]-list[j-]) )
dp[i][j]=dp[i-][j-]+ (list[j]-list[j-])*(list[j]-list[j-]);
} printf("%d\n", dp[k][n]);
}
return ;
}
 

hdu-题目1421:搬寝室的更多相关文章

  1. hdu 1421:搬寝室(动态规划 DP + 排序)

    搬寝室 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  2. 题解报告:hdu 1421 搬寝室(递推dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1421 Problem Description 搬寝室是很累的,xhd深有体会.时间追述2006年7月9 ...

  3. HDU 1421 搬寝室 (线性dp 贪心预处理)

    搬寝室 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  4. HDU 1421 搬寝室

    搬寝室 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  5. HDU 1421 搬寝室 解题报告(超详细)

    **搬寝室 Time Limit: 2000/1000 MS Memory Limit: 65536/32768 K Problem Description 搬寝室是很累的,xhd深有体会.时间追述2 ...

  6. hdu 1421 搬寝室(dp)

    Problem Description 搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆, ...

  7. HDU 1421 搬寝室(经典DP,值得经常回顾)

    搬寝室 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status D ...

  8. Hdoj 1421.搬寝室 题解

    Problem Description 搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆, ...

  9. [HDU 1421]搬寝室(富有新意的DP)

    题目地址:pid=1421" target="_blank">http://acm.hdu.edu.cn/showproblem.php? pid=1421 题目大 ...

  10. 【dp】HDU 1421 搬寝室

    http://acm.hdu.edu.cn/showproblem.php?pid=1421 [题意] 给定n个数,要从n个数中选择k个二元组{x,y},最小化sum{(x-y)^2} 2<=2 ...

随机推荐

  1. 批量删除C#注释

    批量删除C#注释(适用于vs开发环境) 方法: 第一步:使用Ctrl+H快捷键,打开查询替换窗口 第二步:在‘查找选项’中,勾选‘使用’‘正则表达式’ 第三步:在‘查找内容’中,填写正则表达式[\t] ...

  2. XML2JSON 的【net.sf.json.JSONException: nu.xom.ParsingException must be followed by either attribute specifications, ">" or "/>"】问题解决办法

    在使用JSon-Lib库进行XML2JSon的转换时,在JUnit测试时没有什么问题,但是在Tomcat里面跑的时候,抛出了下面的异常,查找了google,发现关于这方便的文章比较少,即使有,也需要F ...

  3. L014-第三关课前linux命令及基础知识考试手把手实战解答小节

    又是一周啊,以后保持一周一个微博吧. 这是一个堂解答考试题的课,那么就以题目来展开吧! 1.如何取得/etiantian文件的权限对应的数字内容,如-rw-r--r--为644,要求用命令获得644这 ...

  4. 解决数据库SUSPECT(置疑)状态

    在虚拟机中运行数据库不小心强制关机了,结果有一个重要的数据库后面加上了一个suspect的关键字,在管理器中打不开,程序也不能运行. 网上有很多分析的方法,试了一些不管用,最后用这种方法解决了,记录一 ...

  5. 【Unity3d】ScriptableObject的简单用法

      ScriptableObject非常适合小数量的游戏数值. 使用ScriptableObject的时候需要注意,生成ScriptableObject数据文件需要自己写Editor代码实现. 大概的 ...

  6. 如何解决Django与Vue语法的冲突

    当我们在django web框架中,使用vue的时候,会遇到语法冲突.因为vue使用{{}},而django也使用{{}},因此会冲突. 解决办法1:在django1.5以后,加入了标签:{% ver ...

  7. Jmeter直连postgresql数据库进行压测

    关于Jmeter直连数据库进行压测,网上有好多教程了,pg数据库的相对少一些,今天自己测试了下,还是挺简单的,有个别需要注意的地方.相较于Loadrunner这么全面庞大的压测工具,Jmeter在数据 ...

  8. socket编程为什么需要htonl(), ntohl(), ntohs(),htons() 函数-------转载

    在C/C++写网络程序的时候,往往会遇到字节的网络顺序和主机顺序的问题.这是就可能用到htons(), ntohl(), ntohs(),htons()这4个函数. 网络字节顺序与本地字节顺序之间的转 ...

  9. 时序数据库InfluxDB

    在系统服务部署过后,线上运行服务的稳定性是系统好坏的重要体现,监控系统状态至关重要,经过调研了解,时序数据库influxDB在此方面表现优异. influxDB介绍 时间序列数据是以时间字段为每行数据 ...

  10. Nginx特性验证-反向代理/负载均衡/页面缓存/URL重定向

    原文发表于cu:2016-08-25 参考文档: Nginx 反向代理.负载均衡.页面缓存.URL重写等:http://freeloda.blog.51cto.com/2033581/1288553 ...