http://poj.org/problem?id=3233

题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。
这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有:
A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

代码如下:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <queue>
using namespace std; struct matrix
{
int a[][];
} init,res;
int n,k,mod;
matrix Mult(matrix x,matrix y)
{
matrix tmp;
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
tmp.a[i][j]=;
for(int k=; k<n; k++)
tmp.a[i][j]=(tmp.a[i][j]+x.a[i][k]*y.a[k][j])%mod;
}
}
return tmp;
}
matrix Pow(matrix x,int k)
{
matrix tmp;
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
tmp.a[i][j]=(i==j);
}
while(k)
{
if(k&)
tmp=Mult(tmp,x);
k>>=;
x=Mult(x,x);
}
return tmp;
}
matrix Add(matrix x,matrix y)
{
matrix tmp;
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
tmp.a[i][j]=(x.a[i][j]+y.a[i][j])%mod;
}
}
return tmp;
}
matrix Sum(matrix x,int k)
{
if(k==)
return x;
matrix tmp=Sum(x,k/),y;
if(k&)
{
y=Pow(x,k/+);
tmp=Add(Mult(y,tmp),tmp);
return Add(tmp,y);
}
else
{
y=Pow(x,k/);
return Add(Mult(y,tmp),tmp);
}
}
int main()
{
while(scanf("%d%d%d",&n,&k,&mod)!=EOF)
{
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
scanf("%d",&init.a[i][j]);
init.a[i][j]%=mod;
}
}
res=Sum(init,k);
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
if(j==) printf("%d",res.a[i][j]);
else printf(" %d",res.a[i][j]);
}
printf("\n");
}
}
return ;
}

其他大神的想法:

题目分析:矩阵快速幂。首先我们知道 A^x 可以用矩阵快速幂求出来。其次可以对k进行二分,每次将规模减半,分k为奇偶两种情况,如当k = 6和k = 7时有:

      k = 6 有: S(6) = (1 + A^3) * (A + A^2 + A^3) = (1 + A^3) * S(3)。
      k = 7 有: S(7) = A + (A + A^4) * (A + A^2 + A^3) = A + (A + A^4) * S(3)。
 
ps:对矩阵定义成结构体Matrix,求S时用递归,程序会比较直观,好写一点。当然定义成数组,然后再进行一些预处理,效率会更高些。
 

POJ3233:Matrix Power Series(矩阵快速幂+二分)的更多相关文章

  1. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  2. POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 27277   Accepted:  ...

  3. POJ3233:Matrix Power Series(矩阵快速幂+递推式)

    传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...

  4. POJ3233 Matrix Power Series(矩阵快速幂+分治)

    Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. ...

  5. POJ 3233:Matrix Power Series 矩阵快速幂 乘积

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 18450   Accepted:  ...

  6. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

  7. POJ3233 Matrix Power Series(快速幂求等比矩阵和)

    题面 \(solution:\) 首先,如果题目只要我们求\(A^K\) 那这一题我们可以直接模版矩乘快速幂来做,但是它现在让我们求$\sum_{i=1}^{k}{(A^i)} $ 所以我们思考一下这 ...

  8. POJ-3233 Matrix Power Series 矩阵A^1+A^2+A^3...求和转化

    S(k)=A^1+A^2...+A^k. 保利求解就超时了,我们考虑一下当k为偶数的情况,A^1+A^2+A^3+A^4...+A^k,取其中前一半A^1+A^2...A^k/2,后一半提取公共矩阵A ...

  9. POJ3233Matrix Power Series(矩阵快速幂)

    题意 题目链接 给出$n \times n$的矩阵$A$,求$\sum_{i = 1}^k A^i $,每个元素对$m$取模 Sol 考虑直接分治 当$k$为奇数时 $\sum_{i = 1}^k A ...

随机推荐

  1. 改善C#程序的建议4:C#中标准Dispose模式的实现

    http://www.cnblogs.com/luminji/archive/2011/03/29/1997812.html 需要明确一下C#程序(或者说.NET)中的资源.简单的说来,C#中的每一个 ...

  2. 二:Java之异常处理

    一.异常的概念 异常,也就是非正常情况. 其实.异常本质上是程序上的错误,包含程序逻辑错误和系统错误. 错误在我们编敲代码的过程中会常常发生,包含编译期间和执行期间的错误,在编译期间出现的错误有编译器 ...

  3. divmod()

    divmod() 接收两个数值,然后以元组的形式返回这两个数值的商和余数 In [1]: divmod(5, 2) Out[1]: (2, 1) In [2]: divmod(10, 7) Out[2 ...

  4. C语言中的文本流与二进制流的区别

    近期看到了文本流和二进制流的区别,书上讲的比较含糊,理解不透彻,于是细细琢磨了下,把心得跟大家分享一下: 一.首先回答,什么是文件,流 一个文件通常就是磁盘上的一段命名的存储区.比如 stdio.h ...

  5. idea & datagrip 注册码

    CNEKJPQZEX-eyJsaWNlbnNlSWQiOiJDTkVLSlBRWkVYIiwibGljZW5zZWVOYW1lIjoibGFuIHl1IiwiYXNzaWduZWVOYW1lIjoiI ...

  6. mac 操作idea快捷键

    http://blog.csdn.net/rainytooo/article/details/51469126 在mac下idea的常用快捷键如下,下面的快捷键都亲自试用,并有一些和eclipse对比 ...

  7. Android SDK更新下载失败以及Studio首次安装取消自动下载SDK

    这是因为,此时Android Studio会去获取 android sdk 组件信息,这个过程相当慢,还经常加载失败,导致Android Studio启动不起开. 解决办法: 不去获取android ...

  8. 说说NAND FLASH以及相关ECC校验方法

    Flash名称的由来,Flash的擦除操作是以block块为单位的,与此相对应的是其他很多存储设备,是以bit位为最小读取/写入的单位,Flash是一次性地擦除整个块:在发送一个擦除命令后,一次性地将 ...

  9. js方法随机抽取n个随机数

    function getImageRandomPosition(){ do { var n = Math.floor(Math.random() * 12);//n为随机出现的0-11之内的数值 fo ...

  10. 教程Xcode 下编译发布与提交App到AppStore

    The proplem of Prepare for Upload for App store upload Application App store 增加新应用的步骤. 1. 访问iTunesCo ...