题面

题解

线段树合并

我们看到这道题目首先可以想到树上差分,然后\(dfs\)合并

发现题目让我们求的东西很好用线段树维护

于是可以想到线段树合并

全世界只有我写指针版动态开点线段树(大雾

如果你要写指针版,请开内存池,new又耗时又浪费空间

代码

#include<cstdio>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout); inline int read()
{
int data=0, w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1, ch=getchar();
while(ch>='0'&&ch<='9') data=data*10+(ch^48), ch=getchar();
return data*w;
} const int maxn(100010);
struct node { node *son[2]; int max, id; } *root[maxn], pool[maxn * 50], *pos;
struct edge { int next, to; } e[maxn << 1];
struct query { int next, to, id; } q[maxn << 1];
struct answer { int a, b, v, lca; } ans[maxn];
bool vis[maxn];
int head[maxn], e_num, fa[maxn], n, m, s, qhead[maxn], q_num, F[maxn], Ans[maxn];
inline void add_edge(int from, int to) { e[++e_num] = (edge) {head[from], to}; head[from] = e_num; }
inline void add_query(int from, int to, int id) { q[++q_num] = (query) {qhead[from], to, id}; qhead[from] = q_num; }
inline int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); } void dfs(int x)
{
vis[x] = true;
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to; if(to == F[x]) continue;
F[to] = x; dfs(to); fa[find(to)] = find(x);
} for(RG int i = qhead[x]; i; i = q[i].next)
{
int to = q[i].to; if(!vis[to]) continue;
ans[q[i].id].lca = find(to);
}
} inline int Max(node *x) { return x ? x -> max : 0; }
inline int Id(node *x) { return x ? x -> id : 0; }
inline void pushup(node *x)
{
if(Max(x -> son[0]) >= Max(x -> son[1])) x -> max = Max(x -> son[0]), x -> id = Id(x -> son[0]);
else x -> max = Max(x -> son[1]), x -> id = Id(x -> son[1]);
if(!x -> max) x -> id = 0;
} inline void Insert(node *&x, int pos, int val, int l = 1, int r = maxn - 10)
{
if(!x) x = ::pos++; if(l == r) { x -> max += val; x -> id = l; if(!x -> max) x -> id = 0; return; }
int mid = (l + r) >> 1;
if(pos <= mid) Insert(x -> son[0], pos, val, l, mid);
else Insert(x -> son[1], pos, val, mid + 1, r);
pushup(x); if(!x -> max) x -> id = 0;
} inline node *Merge(node *x, node *&y, int l = 1, int r = maxn - 10)
{
if(!x) return y; if(!y) return x;
int mid = (l + r) >> 1; if(l == r) { x -> max += y -> max; x -> id = l; return x; }
x -> son[0] = Merge(x -> son[0], y -> son[0], l, mid);
x -> son[1] = Merge(x -> son[1], y -> son[1], mid + 1, r);
pushup(x); return x;
} void solve(int x)
{
for(RG int i = head[x]; i; i = e[i].next)
{
int to = e[i].to; if(to == F[x]) continue;
solve(to); root[x] = Merge(root[x], root[to]);
} Ans[x] = Id(root[x]);
} int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif pos = pool; n = read(); m = read();
for(RG int i = 1, a, b; i < n; i++) a = read(), b = read(), add_edge(a, b), add_edge(b, a);
for(RG int i = 1; i <= n; i++) fa[i] = i;
for(RG int i = 1, a, b, c; i <= m; i++)
a = read(), b = read(), c = read(), ans[i] = (answer) {a, b, c, 0}, add_query(a, b, i), add_query(b, a, i);
dfs(1);
for(RG int i = 1; i <= m; i++)
Insert(root[ans[i].a], ans[i].v, 1), Insert(root[ans[i].b], ans[i].v, 1), Insert(root[ans[i].lca], ans[i].v, -1),
Insert(root[F[ans[i].lca]], ans[i].v, -1);
solve(1); for(RG int i = 1; i <= n; i++) printf("%d\n", Ans[i]);
return 0;
}

【洛谷P4556】 雨天的尾巴的更多相关文章

  1. 洛谷P4556 雨天的尾巴(线段树合并)

    洛谷P4556 雨天的尾巴 题目链接 题解: 因为一个点可能存放多种物品,直接开二维数组进行统计时间.空间复杂度都不能承受.因为每一个点所拥有的物品只与其子树中的点有关,所以可以考虑对每一个点来建立一 ...

  2. [洛谷P4556] 雨天的尾巴

    这道题可以用线段树合并做,网上的题解基本上都是线段树合并的. 但是为什么我就偏偏要用dsu on tree...... 题目传送门 dsu on tree的方法类似[CF1009F] Dominant ...

  3. 洛谷P4556 雨天的尾巴 线段树

    正解:线段树合并 解题报告: 传送门! 考虑对树上的每个节点开一棵权值线段树,动态开点,记录一个max(num,id)(这儿的id,define了一下,,,指的是从小到大排QAQ 然后修改操作可以考虑 ...

  4. [洛谷 P4556] 雨天的尾巴

    传送门 Solution 线段树合并的入门题 lca可以在dfs的时候离线求(用并查集) 更新的点有每条链的两个端点,它们的lca和dad[lca] 为了节省空间,lca和dad[lca]的更新可以先 ...

  5. 洛谷 P4556 [Vani有约会]雨天的尾巴 解题报告

    P4556 [Vani有约会]雨天的尾巴 题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒 ...

  6. 洛谷P4556 [Vani有约会]雨天的尾巴(线段树合并)

    题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连根拔起,以及田地 ...

  7. 2018.08.28 洛谷P4556 [Vani有约会]雨天的尾巴(树上差分+线段树合并)

    传送门 要求维护每个点上出现次数最多的颜色. 对于每次修改,我们用树上差分的思想,然后线段树合并统计答案就行了. 注意颜色很大需要离散化. 代码: #include<bits/stdc++.h& ...

  8. [洛谷P4556][BZOJ3307]雨天的尾巴-T3订正

    线段树合并+树上差分 题目链接(···) 「简单」「一般」——其实「一般」也只多一个离散化 考试时想法看>这里< 总思路:先存所有的操作,离散化,然后用树上差分解决修改,用权值线段树维护每 ...

  9. P4556 雨天的尾巴 线段树合并

    使用线段树合并,每个节点维护一棵权值线段树,下标为救济粮种类,区间维护数量最多的救济粮编号(下标).所以每个节点答案即为\(tre[rot[x]]\). 然后运用树上点的差分思想,对于分发路径\(u, ...

随机推荐

  1. iOS的图片:解码(CPU)与内存(缓存)

    图片的数据:资源数据(地址).原始数据(Data).显示数据(解码后的数据) 解压图片 - PNG或者JPEG压缩之后的图片文件会比同质量的位图小得多.但是在图片绘制到屏幕上之前,必须把它扩展成完整的 ...

  2. angular cli

    1. 安装cnpm: npm install -g cnpm --registry=https://registry.npm.taobao.org 2. 安装angular/cli: cnpm ins ...

  3. DateConvertUtil 日期工具类

    package com.hxqc.basic.dependency.util; import java.text.DateFormat; import java.text.ParseException ...

  4. Kali-linux服务的指纹识别

    为了确保有一个成功的渗透测试,必须需要知道目标系统中服务的指纹信息.服务指纹信息包括服务端口.服务名和版本等.在Kali中,可以使用Nmap和Amap工具识别指纹信息.本节将介绍使用Nmap和Amap ...

  5. 修改Xcode工程名称

    概述 有的时候需要在现有的项目上面开发一个新的项目,如果新建工程的话,就比较麻烦了,所以一般是直接现有的工程上面直接修改名字步骤如下: 1.修改工程名字 在这里修改完之后,会弹出一个对话框,点击Ren ...

  6. Nginx之动静分离

    为什么要动静分离呢? 拿Nginx来说,Nginx是Web服务器,仅仅只能处理静态资源(例如js,img,css等等),而Tomcat属于应用服务器既能处理静态资源又能处理动态资源(例如jsp,fre ...

  7. Spring(十三)之SQL存储过程

    SimpleJdbcCall 类可以被用于调用一个包含 IN 和 OUT 参数的存储过程.你可以在处理任何一个 RDBMS 时使用这个方法,就像 Apache Derby, DB2, MySQL, M ...

  8. Spring(七)之基于注解配置

    基于注解的配置 从 Spring 2.5 开始就可以使用注解来配置依赖注入.而不是采用 XML 来描述一个 bean 连线,你可以使用相关类,方法或字段声明的注解,将 bean 配置移动到组件类本身. ...

  9. 前端基础-CSS是什么?

    阅读目录 一. 什么是CSS 二. 为何要用CSS 三. 如何使用CSS 一. 什么是CSS CSS全称Cascading Style Sheet层叠样式表,是专用用来为HTML标签添加样式的. 样式 ...

  10. Scanner(基本用法初学)

    package day01; import java.util.Scanner; public class Case05 { public static void main(String[] args ...