阅读笔记:Solving the “false positives” problem in fraud prediction
刚读完一篇paper《Solving the “false positives” problem in fraud prediction》,趁热打铁,做个笔记。
文章下载链接:https://arxiv.org/pdf/1710.07709.pdf
概述
这篇文章是对 bank transaction fraud prediction 场景下的机器学习算法做了优化,优化方法是,使用 Deep Feature Synthesis 自动生成大量的特征,优化后 False Positive Rate可以大大降低。
文章的核心在 Deep Feature Systhesis (DFS) 这种特征生成方法。
笔记
1、在欺诈检测这个场景中,TPR和FPR都很关键,TPR是坏人的查全率,即抓到了多少坏人,FPR可以理解为好人的查全率,即抓到了多少好人。TPR越高越好,可是TPR越高,FPR也会越高,这里存在一个经济成本的tradeoff,多抓一个坏人,银行会节省一笔money,多抓一个好人,银行会损失一笔money,也就是说,抓坏人的代价是牵连了一部分好人。而且在实际应用场景中,customer retention(客户维系)十分关键,银行宁愿忍受欺诈带来的损失,也不愿意流失一个优质客户。这是做 fraud prediction的一大挑战。
2、DFS是一种特征生成方法,可以针对多个关系型数据表自动生成统计特征。
简述一下DFS。它是一种特征生成方法,可以结构化的生成特征,但是目前只能针对多个关系型数据表生成统计特征,其他高级特征,比如 频域变换、小波变换或者图特征、时序特征还有待补充和加强。
DFS有几个关键概念:
一是relationship,表示数据表之间的关系,目前只支持一种关系——parent and child,翻译过来就是“一对多”,比如 user表和transaction表,一个user有多个transaction,所以user和transaction就是parent-child关系;
二是primitives,表示特征算子,具体分为两类,一类叫 Transform Primitives,另一类叫 Aggregation Primitives,Transform是对数据表的单个列做变换运算,比如把timestamp列的year,month,day,hour单独提取出来,Aggregation是对一列中的多行数据做聚合运算,比如 sum, std, mean, max, min, skew,DFS就是结合多张表的relation,反复运用Trans和Aggre两类运算,计算出许多组合特征,比如 SUM(sessions.STD(transactions.amount)), MEAN(sessions.COUNT(transactions))。
DFS对应的github项目:github-featureTools
DFS论文:http://www.jmaxkanter.com/static/papers/DSAA_DSM_2015.pdf
3、transaction相关的数据有两类,一类是transaction发生时伴随的属性,比如 timestamp, userid, cash, 另一类是与transaction相关的历史数据,比如 user过去的交易行为,只用第一类数据,能得到93个feature,两类数据放在一起,使用DFS,能得到267个feature,在模型不变的情况下,后者的TPR和FPR比前者也高了不少,说明多出来的feature是十分有效的。
4、文中提到了一种寻找最优门限的方法。RandomForest用于分类问题时,最终输出的是每个测试样本的得分(score),可以理解为样本是坏人的概率,我们需要确定一个threshold,把高于threshold的人视为模型抓到的坏人。
文中给出了训练和测试流程,其中包括确定threshold的方法。首先把数据集划分为三组,比例大约是55%、7%和38%,第一部分是训练数据,用于训练模型,第二部分做验证,用来确定门限threshold,确定的方法是最大化 Precision*u(TPR-0.89),0.89是人为指定的TPR参考值,也就是说,TPR=0.89就足够高,在TPR>=0.89时,需要提高Precision,第三部分数据用于测试模型效果。
[注:u(x)是一个unit step函数,当x>=0时,u(x)=1,otherwise, u(x)=0]
p.s. featureTools这个项目值得继续研究,对特征生成还是很有借鉴意义的。
阅读笔记:Solving the “false positives” problem in fraud prediction的更多相关文章
- [阅读笔记]Software optimization resources
http://www.agner.org/optimize/#manuals 阅读笔记Optimizing software in C++ 7. The efficiency of differe ...
- CI框架源码阅读笔记4 引导文件CodeIgniter.php
到了这里,终于进入CI框架的核心了.既然是“引导”文件,那么就是对用户的请求.参数等做相应的导向,让用户请求和数据流按照正确的线路各就各位.例如,用户的请求url: http://you.host.c ...
- CI框架源码阅读笔记3 全局函数Common.php
从本篇开始,将深入CI框架的内部,一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说,全局函数具有最高的加载优先权,因此大多数的框架中BootStrap ...
- CI框架源码阅读笔记2 一切的入口 index.php
上一节(CI框架源码阅读笔记1 - 环境准备.基本术语和框架流程)中,我们提到了CI框架的基本流程,这里再次贴出流程图,以备参考: 作为CI框架的入口文件,源码阅读,自然由此开始.在源码阅读的过程中, ...
- Mongodb Manual阅读笔记:CH9 Sharding
9.分片(Sharding) Mongodb Manual阅读笔记:CH2 Mongodb CRUD 操作Mongodb Manual阅读笔记:CH3 数据模型(Data Models)Mongodb ...
- Mongodb Manual阅读笔记:CH8 复制集
8 复制 Mongodb Manual阅读笔记:CH2 Mongodb CRUD 操作Mongodb Manual阅读笔记:CH3 数据模型(Data Models)Mongodb Manual阅读笔 ...
- Mongodb Manual阅读笔记:CH7 索引
7索引 Mongodb Manual阅读笔记:CH2 Mongodb CRUD 操作Mongodb Manual阅读笔记:CH3 数据模型(Data Models)Mongodb Manual阅读笔记 ...
- Mongodb源代码阅读笔记:Journal机制
Mongodb源代码阅读笔记:Journal机制 Mongodb源代码阅读笔记:Journal机制 涉及的文件 一些说明 PREPLOGBUFFER WRITETOJOURNAL WRITETODAT ...
- Mongodb Manual阅读笔记:CH4 管理
4 管理 Mongodb Manual阅读笔记:CH2 Mongodb CRUD 操作Mongodb Manual阅读笔记:CH3 数据模型(Data Models)Mongodb Manual阅读笔 ...
随机推荐
- ajax回调函数中使用$(this)取不到对象的解决方法
如果在ajax的回调函数内使用$(this)的话,实践证明,是取不到任何对象的,需要的朋友可以参考下 $(".derek").each(function(){ $(this).cl ...
- jQuery的Ajax操作小结——$.ajax和$.getJSON等用法小结
一.$.ajax用法与举例 jQuery.ajax(url,[settings]) ——返回值:XMLHttpRequest 通过 HTTP 请求加载远程数据,这个是jQuery 的底层 AJ ...
- 【问题】报错[CRITICAL] Rendering SLS 'base:minions.install' failed: Jinja variable 'list' object has no element 0
1.报错[CRITICAL] Rendering SLS 'base:minions.install' failed: Jinja variable 'list' object has no elem ...
- 动态调用WCF不添加服务(svcutil.exe)
记录下 首先用svcutil.exe把指定wcf接口的信息下载下来. 生成代理类 比如说接口地址为 http://localhost:6666/Service1.svc 以管理员身份打开cmd 执形 ...
- ThinkPHP的ajaxReturn方法的使用
ThinkPHP后端的代码如下: public function testAjax(){ $this->ajaxReturn(array('name'=>'z','age'=>18) ...
- ThinkPHP之文件上传
在项目其中.我们有的时候需要上传图片的功能.简单的从面相过程的方法是相对较为复杂的,要一步一步的来.假设用框架的话,相对就简单了很多,主要就是方法以及每个变量所代表的意义,然后就是一些注意的地方了. ...
- 简单工厂模式(simple factory pattern)
与一个对象相关的职责通常有3类: 1.对象本身所具有的职责(对象自身所具有的数据和行为) 2.创建对象的职责 3.使用对象的职责: 简单工厂模式的缺点: 1.简单工厂集中了所有产品的创建逻辑,职责过重 ...
- myeclipse配置Hadoop插件
每个版本的 hadoop 都有相应版本的 MyEclipse 插件,官网并没有提供插件的jar包下载.在hadoop/src/contrib 目录下有一个 eclipse-plugin 项目,此项目就 ...
- 调用外部 DLL 中的函数(1. 早绑定)
,b,t,);end; end.
- sql 字符串操作
SQL Server之字符串函数 以下所有例子均Studnet表为例: 计算字符串长度len()用来计算字符串的长度 select sname ,len(sname) from student ...