Description

小宇从历史书上了解到一个古老的文明。这个文明在各个方面高度发达,交通方面也不例外。考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n。m条道路连接在这些城市之间,每条道路将两个城市连接起来,使得两地的居民可以方便地来往。一对城市之间可能存在多条道路。

据史料记载,这个文明的交通网络满足两个奇怪的特征。首先,这个文明崇拜数字K,所以对于任何一条道路,设它连接的两个城市分别为u和v,则必定满足1 <=|u - v| <= K。此外,任何一个城市都与恰好偶数条道路相连(0也被认为是偶数)。不过,由于时间过于久远,具体的交通网络我们已经无法得知了。小宇很好奇这n个城市之间究竟有多少种可能的连接方法,于是她向你求助。

方法数可能很大,你只需要输出方法数模1000000007后的结果。

Input

输入共一行,为3个整数n,m,K。

Output

输出1个整数,表示方案数模1000000007后的结果。

Sample Input

【输入样例1】

3 4 1

【输入样例2】

4 3 3

Sample Output

【输出样例1】

3

【输出样例2】

4

【数据规模】

HINT

100%的数据满足1 <= n <= 30, 0 <= m <= 30, 1 <= K <= 8.

【题目说明】

两种可能的连接方法不同当且仅当存在一对城市,它们间的道路数在两种方法中不同。

在交通网络中,有可能存在两个城市无法互相到达。


思路

大暴力切题。。。

理论复杂度上线\(n^4*2^{k+1}\)

别问我为啥可以过。。。

思路就是记录下前面k个点的链接边的奇偶性

然后暴力枚举当前和哪一个点练多少条边

判断一下转移条件就可以啦

注意对当前节点链接节点的枚举要在最外层

不然会出事情

142857说可以优化掉一个n,但是我懒了

直接暴力转移暴力dp反正可以过,还比某妹神的dp快到不知道哪里去


//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
typedef pair<int, int> pi;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 32;
const int K = 10;
const int Mod = 1e9 + 7;
int dp[N][N][1 << K];
int n, m, k; void add(int &a, int b) {
if ((a += b) >= Mod) a -= Mod;
} int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
Read(n), Read(m), Read(k);
dp[1][0][0] = 1;
int up = (1 << (k + 2)) - 1;
fu(i, 2, n) {
fu(j, 0, m)
fu(l, 0, up) if ((l & 1) == 0 && dp[i - 1][j][l])
add(dp[i][j][l >> 1], dp[i - 1][j][l]);
fu(j, 1, min(k, i - 1))
fd(l, m, 0)
fu(p, 0, up)
fu(e, 1, l) if (dp[i][l - e][p])
add(dp[i][l][p ^ ((e & 1) << (k + 1)) ^ ((e & 1) << (k - j + 1))], dp[i][l - e][p]);
}
Write(dp[n][m][0]);
return 0;
}

BZOJ3195: [Jxoi2012]奇怪的道路【状压DP】的更多相关文章

  1. bzoj3195 [Jxoi2012]奇怪的道路——状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3195 看到数据范围就应该想到状压呢... 题解(原来是这样):https://www.cnb ...

  2. 【BZOJ3195】[Jxoi2012]奇怪的道路 状压DP

    [BZOJ3195][Jxoi2012]奇怪的道路 Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期有n座 ...

  3. 【BZOJ-3195】奇怪的道路 状压DP (好题!)

    3195: [Jxoi2012]奇怪的道路 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 305  Solved: 184[Submit][Statu ...

  4. BZOJ 3195 [Jxoi2012]奇怪的道路 | 状压DP

    传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度 ...

  5. 奇怪的道路——状压DP

    题目描述 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外. 考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n.m条道路连接在这些城市之间,每条道路将两个 ...

  6. bzoj 3195 奇怪的道路 状压dp

    看范围,状压没毛病 但是如果随便连的话给开1<<16,乘上n,m就爆了 所以规定转移时只向回连边 于是想状态数组:f[i][j]表示到i这里i前K位的状态为j(表示奇偶) 发现有条数限制, ...

  7. 【BZOJ 3195 】[Jxoi2012]奇怪的道路 装压dp

    受惯性思维的影响自动把二进制状态认为是连与不连......... 我们这里二进制状态表示的是奇偶,这样的话我们f[i][j][k]表示的就是前i个城市用了j个边他前k个城市的奇偶状态,然后想想怎么转移 ...

  8. [BZOJ3195][Jxoi2012]奇怪的道路

    3195: [Jxoi2012]奇怪的道路 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小宇从历史书上了解到一个古老的文明.这个文明在各个 ...

  9. bzoj3195: [Jxoi2012]奇怪的道路(状压dp)

    Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n.m条道路连接在这些城市之间,每 ...

随机推荐

  1. docker——三剑客之Docker Compose

    编排(Orchestration)功能是复杂系统实现灵活可操作性的关键.特别是在Docker应用场景中,编排意味着用户可以灵活的对各种容器资源实现定义和管理. 作为Docker官方编排工具,Compo ...

  2. 2.7 The Object Model -- Bindings, Observers, Computed Properties:What do I use when?

    有时候新用户在使用计算属性.绑定和监视者时感到困惑.下面是一些指导方针: 1. 使用computed properties来合成其他属性,以构建新的属性.computed properties不应该包 ...

  3. 5.6 Components -- Handling User Interaction with Actions

    1. 组件允许你定义可以在整个应用程序中重用的控件.如果它们够通用,它们也可以在被共享给其他人并且在许多应用程序中被使用. 2. 为了使一个可重用的控件有用,然而,你首先需要你的应用程序的用户和它交互 ...

  4. arguments参数对象

    //求任意个数的和 function test() { var sum = 0; for (var i = 0; i < arguments.length; i++) { sum += argu ...

  5. F题:等差区间(RMQ||线段树)

    原题大意:原题链接  题解链接 给定一个长为n的数组元素和q次区间[l,r]询问,判断区间[l,r]内元素排序后能否构成等差数列 #include<cmath> #include<c ...

  6. VS2010/MFC编程入门之二十九(常用控件:列表视图控件List Control 下)

    上一节是关于列表视图控件List Control的上半部分,简单介绍了列表视图控件,其通知消息的处理和有关结构体的定义.本节继续讲解下半部分,包括列表视图控件的创建.CListCtrl类的主要成员函数 ...

  7. Ubuntu下的MongoDB GUI 可视化管理工具

    目录 1 Robo 3T 2 NoSQLBooster for MongoDB(收费) 3 JetBrains Plugin Repository :: Mongo Plugin Ubuntu下的Mo ...

  8. windows10如何安装cpu版本tensorflow

    1.获取anaconda https://repo.continuum.io/archive/Anaconda3-2018.12-Windows-x86_64.exe (这个版本内置python3.7 ...

  9. Object.defineProperty和Object.defineProperties

    添加属性到对象,或修改现有属性的特性   用法:     Object.defineProperty(object, propertyName, descriptor); 参数:     object ...

  10. 第二章 第二个spring-boot程序

    上一节的代码是spring-boot的入门程序,也是官方文档上的一个程序.这一节会引入spring-boot官方文档推荐的方式来开发代码,并引入我们在spring开发中service层等的调用. 1. ...