BZOJ3195: [Jxoi2012]奇怪的道路【状压DP】
Description
小宇从历史书上了解到一个古老的文明。这个文明在各个方面高度发达,交通方面也不例外。考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n。m条道路连接在这些城市之间,每条道路将两个城市连接起来,使得两地的居民可以方便地来往。一对城市之间可能存在多条道路。
据史料记载,这个文明的交通网络满足两个奇怪的特征。首先,这个文明崇拜数字K,所以对于任何一条道路,设它连接的两个城市分别为u和v,则必定满足1 <=|u - v| <= K。此外,任何一个城市都与恰好偶数条道路相连(0也被认为是偶数)。不过,由于时间过于久远,具体的交通网络我们已经无法得知了。小宇很好奇这n个城市之间究竟有多少种可能的连接方法,于是她向你求助。
方法数可能很大,你只需要输出方法数模1000000007后的结果。
Input
输入共一行,为3个整数n,m,K。
Output
输出1个整数,表示方案数模1000000007后的结果。
Sample Input
【输入样例1】
3 4 1
【输入样例2】
4 3 3
Sample Output
【输出样例1】
3
【输出样例2】
4
【数据规模】
HINT
100%的数据满足1 <= n <= 30, 0 <= m <= 30, 1 <= K <= 8.
【题目说明】
两种可能的连接方法不同当且仅当存在一对城市,它们间的道路数在两种方法中不同。
在交通网络中,有可能存在两个城市无法互相到达。
思路
大暴力切题。。。
理论复杂度上线\(n^4*2^{k+1}\)
别问我为啥可以过。。。
思路就是记录下前面k个点的链接边的奇偶性
然后暴力枚举当前和哪一个点练多少条边
判断一下转移条件就可以啦
注意对当前节点链接节点的枚举要在最外层
不然会出事情
142857说可以优化掉一个n,但是我懒了
直接暴力转移暴力dp反正可以过,还比某妹神的dp快到不知道哪里去
//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
typedef pair<int, int> pi;
typedef long long ll;
typedef double db;
#define fi first
#define se second
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 32;
const int K = 10;
const int Mod = 1e9 + 7;
int dp[N][N][1 << K];
int n, m, k;
void add(int &a, int b) {
if ((a += b) >= Mod) a -= Mod;
}
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
Read(n), Read(m), Read(k);
dp[1][0][0] = 1;
int up = (1 << (k + 2)) - 1;
fu(i, 2, n) {
fu(j, 0, m)
fu(l, 0, up) if ((l & 1) == 0 && dp[i - 1][j][l])
add(dp[i][j][l >> 1], dp[i - 1][j][l]);
fu(j, 1, min(k, i - 1))
fd(l, m, 0)
fu(p, 0, up)
fu(e, 1, l) if (dp[i][l - e][p])
add(dp[i][l][p ^ ((e & 1) << (k + 1)) ^ ((e & 1) << (k - j + 1))], dp[i][l - e][p]);
}
Write(dp[n][m][0]);
return 0;
}
BZOJ3195: [Jxoi2012]奇怪的道路【状压DP】的更多相关文章
- bzoj3195 [Jxoi2012]奇怪的道路——状压DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3195 看到数据范围就应该想到状压呢... 题解(原来是这样):https://www.cnb ...
- 【BZOJ3195】[Jxoi2012]奇怪的道路 状压DP
[BZOJ3195][Jxoi2012]奇怪的道路 Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期有n座 ...
- 【BZOJ-3195】奇怪的道路 状压DP (好题!)
3195: [Jxoi2012]奇怪的道路 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 305 Solved: 184[Submit][Statu ...
- BZOJ 3195 [Jxoi2012]奇怪的道路 | 状压DP
传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度 ...
- 奇怪的道路——状压DP
题目描述 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外. 考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n.m条道路连接在这些城市之间,每条道路将两个 ...
- bzoj 3195 奇怪的道路 状压dp
看范围,状压没毛病 但是如果随便连的话给开1<<16,乘上n,m就爆了 所以规定转移时只向回连边 于是想状态数组:f[i][j]表示到i这里i前K位的状态为j(表示奇偶) 发现有条数限制, ...
- 【BZOJ 3195 】[Jxoi2012]奇怪的道路 装压dp
受惯性思维的影响自动把二进制状态认为是连与不连......... 我们这里二进制状态表示的是奇偶,这样的话我们f[i][j][k]表示的就是前i个城市用了j个边他前k个城市的奇偶状态,然后想想怎么转移 ...
- [BZOJ3195][Jxoi2012]奇怪的道路
3195: [Jxoi2012]奇怪的道路 Time Limit: 10 Sec Memory Limit: 128 MB Description 小宇从历史书上了解到一个古老的文明.这个文明在各个 ...
- bzoj3195: [Jxoi2012]奇怪的道路(状压dp)
Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n.m条道路连接在这些城市之间,每 ...
随机推荐
- 常微分方程初值问题:多步预测-修正方法 [MATLAB]
#先上代码后补笔记# #可以直接复制粘贴调用的MATLAB函数代码!# 1. 亚当斯(Adams)预测-修正算法 由亚当斯-巴什福特(Adams-Bashforth)显式预测公式和亚当斯-莫顿(Ada ...
- #C++初学记录(高精度运算)(加法)
高精度运算 不管是int还是double亦或者long long ,这些定义变量都有数据范围的一定限制,在计算位数超过十几位的数,也就是超过他们自身的数据范围时,不能采用现有类型进行计算,只能自己通过 ...
- supervisor安装及其配置
一.supervisor概述 supervisor是一个c/s系统,被用来在类Unix系统中监控进程状态.supervisor使用python开发. 服务端进程为supervisord,主要负责启动自 ...
- c++编译时打印宏定义
#pragma message("this is message") #pragma message只能打印字符串,如果想打印任何宏定义可使用: #define PRINT_MAC ...
- 图像处理(二十一)基于数据驱动的人脸卡通动画生成-Siggraph Asia 2014
http://blog.csdn.net/garfielder007/article/details/50582018 在现实生活中,我们经常会去评价一个人,长得是否漂亮.是不是帅哥美女,然而如何用五 ...
- VC/MFC 编程技巧大总结
1 toolbar默认位图左上角那个点的颜色是透明色,不喜欢的话可以自己改. 2 VC++中 WM_QUERYENDSESSION WM_ENDSESSION 为系统关机消息. 3 Java学习书推荐 ...
- POJ 2528 Mayor's posters(线段树染色问题+离散化)
http://poj.org/problem?id=2528 题意: 给出一面无限长的墙,现在往墙上依次贴海报,问最后还能看见多少张海报. 题意:这道题目就相当于对x轴染色,然后计算出最后还能看见多少 ...
- 使用 shinydashboard
除了 shiny 扩展包提供的函数之外,RStudio 也开发了一个 shinydashboard 扩展包 (http://rstudio.github.io/shinydashboard/),它呈现 ...
- [osg]osgDB的加载机制,使用3DS插件做参考(转,整理现有osgDB资料)
参考:http://blog.sina.com.cn/s/blog_7cdaf8b60102uzu3.html http://blog.csdn.net/wang15061955806/article ...
- hive row_number等窗口分析函数
一.排序&去重分析 row_number() over(partititon by col1 order by col2) as rn 结果:1,2,3,4 rank() over(parti ...