题意

描述

阿轩在纸上写了两个字符串,分别记为A和B。利用在数据结构与算法课上学到的知识,他很容易地求出了“字符串A从任意位置开始的后缀子串”与“字符串B”匹配的长度。

不过阿轩是一个勤学好问的同学,他向你提出了Q个问题:在每个问题中,他给定你一个整数x,请你告诉他有多少个位置,满足“字符串A从该位置开始的后缀子串”与B匹配的长度恰好为x。

例如:A=aabcde,B=ab,则A有aabcde、abcde、bcde、cde、de、e这6个后缀子串,它们与B=ab的匹配长度分别是1、2、0、0、0、0。因此A有4个位置与B的匹配长度恰好为0,有1个位置的匹配长度恰好为1,有1个位置的匹配长度恰好为2。

输入格式

第一行三个整数N,M,Q,表示A串长度、B串长度、问题个数。

第二行是字符串A,第三行是字符串B。

接下来Q行每行1个整数x,表示一个问题。

1<=N,M,Q,x<=200000.

输出格式

共Q行,依次表示每个问题的答案。

样例输入

6 2 5

aabcde

ab

0

1

2

3

4

样例输出

4

1

1

0

0

来源

北京大学2015年数据结构与算法A期末考试

分析

参照wyboooo的题解。

用KMP先求出以a[i]为结尾的前缀与b匹配的最长长度。

比如 f[i] = j,就表示a[1i]的后缀最多可以和b[1j]匹配。但求出这个并不意味着以a[i]为开头的后缀可以和b恰好匹配j位(因为也许后面还可以匹配),但是可以肯定的是他至少可以匹配j位。我们很难求出恰好可以匹配x位的位置有多少,但是我们可以存至少可以匹配x位的位置的数目,结果用cnt[x] - cnt[x +1]就可以了。

因此cnt[f[i]] ++就很显然了。

由于我们之前求出的是最长长度,因此当a[1i]可以最多和b[1j]匹配时,也一定存在一个小于j的k使得a[1i]和b[1k]匹配,也就是一定能找到一个位置,至少匹配k位,但这个可能我们在之前没有加上过。而这个k恰好就等于nxt[j]。

时间复杂度\(O(N+M+Q)\)

代码

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;
rg char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') w=-1;
ch=getchar();
}
while(isdigit(ch))
data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x){
return x=read<T>();
}
typedef long long LL; co int maxn=2e5+10;
int n,m,q;
char a[maxn],b[maxn];
int nxt[maxn],f[maxn],cnt[maxn];
void getnxt(){
nxt[1]=0;
for(int i=2,j=0;i<=m;++i){
while(j&&b[i]!=b[j+1]) j=nxt[j];
if(b[i]==b[j+1]) ++j;
nxt[i]=j;
}
}
int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n),read(m),read(q);
scanf("%s%s",a+1,b+1);
getnxt();
for(int i=1,j=0;i<=n;++i){
while(j&&a[i]!=b[j+1]) j=nxt[j];
if(a[i]==b[j+1]) ++j;
f[i]=j;
}
for(int i=1;i<=n;++i)
++cnt[f[i]];
for(int i=m;i>=1;--i)
cnt[nxt[i]]+=cnt[i];
for(int x;q--;){
read(x);
printf("%d\n",cnt[x]-cnt[x+1]);
}
return 0;
}

CH1809 匹配统计的更多相关文章

  1. CH1809匹配统计【KMP】

    1809 匹配统计 0x18「基本数据结构」练习 描述 阿轩在纸上写了两个字符串,分别记为A和B.利用在数据结构与算法课上学到的知识,他很容易地求出了“字符串A从任意位置开始的后缀子串”与“字符串B” ...

  2. CH1809 匹配统计 题解

    看了好久才懂,我好菜啊-- 题意:给两个字符串 \(a\) 与 \(b\),对于 \(q\) 次询问,每次询问给出一个 \(x\),求存在多少个位置使得 \(a\) 从该位置开始的后缀子串与 \(b\ ...

  3. 【CH1809】匹配统计(KMP)

    题目链接 摘自https://www.cnblogs.com/wyboooo/p/9829517.html 用KMP先求出以a[i]为结尾的前缀与b匹配的最长长度. 比如 f[i] = j,就表示a[ ...

  4. AcWing 160. 匹配统计 (哈希+二分) 打卡

    阿轩在纸上写了两个字符串,分别记为A和B. 利用在数据结构与算法课上学到的知识,他很容易地求出了“字符串A从任意位置开始的后缀子串”与“字符串B”匹配的长度. 不过阿轩是一个勤学好问的同学,他向你提出 ...

  5. awk 统计出现次数--转

    知识点: 1)数组 数组是用来存储一系列值的变量,可通过索引来访问数组的值. Awk中数组称为关联数组,因为它的下标(索引)可以是数字也可以是字符串. 下标通常称为键,数组元素的键和值存储在Awk程序 ...

  6. Linux Awk使用案例总结(nginx日志统计,文件对比合并等)

    知识点: 1)数组 数组是用来存储一系列值的变量,可通过索引来访问数组的值. Awk中数组称为关联数组,因为它的下标(索引)可以是数字也可以是字符串. 下标通常称为键,数组元素的键和值存储在Awk程序 ...

  7. 010 Linux 文本统计与去重 (wc 和 uniq)

    wc 命令一般是作为组合命令的一员与其他命令一同起到统计的作用.而一般情况下使用wc -l 命令较多. uniq 可检查文本文件中重复出现的行,一般与 sort 命令结合使用.一起组合搭配使用完成统计 ...

  8. Python-12-MySQL & sqlalchemy ORM

    MySQL MySQL相关文章这里不在赘述,想了解的点击下面的链接: >> MySQL安装 >> 数据库介绍 && MySQL基本使用 >> MyS ...

  9. Linux基础命令介绍七:网络传输与安全 wget curl rsync iptables

    本篇接着介绍网络相关命令:wget 文件下载工具.curl 网络数据传输工具.rsync 文件传输工具等. 本篇接着介绍网络相关命令 1.wget 文件下载工具 wget [option]... [U ...

随机推荐

  1. zoj3822

    这题说得是给了一个n*m的棋盘,每天在这个棋盘中放置一个棋子,不能放在之前已经摆放过得地方,求最后使得每行每列都有至少一个棋子的期望天数是多少,这样我们考虑怎么放,放哪里,显然数据大而且不知道状态怎么 ...

  2. mongo增删改查封装(C#)

    Framework版本:.Net Framework 4 ConnectionUtil源码参见:https://www.cnblogs.com/threadj/p/10536273.html usin ...

  3. 20145326蔡馨熠 实验三 "敏捷开发与XP实践"

    20145326蔡馨熠 实验三 "敏捷开发与XP实践" 程序设计过程 一.实验内容 使用 git 上传代码 使用 git 相互更改代码 实现代码的重载 1.git上传代码 首先我通 ...

  4. FromBottomToTop第十二周项目博客

    FromBottomToTop第十二周项目博客 本周项目计划 设计整体架构,收集素材,制作出静态界面部分 项目进展 已完成游戏整体架构设计 已完成游戏界面.背景音乐等素材的收集 正在进行静态界面部分的 ...

  5. ZLYD团队第一周项目总结

    ZLYD团队第一周项目总结 团队项目 项目内容:我们打算利用Applet实现一个吃豆子游戏,团队初步设定游戏规则如下: 按空格键,游戏开始: 通过方向键控制吃豆者的运动方向,直到吃光所有金豆子: 吃到 ...

  6. How does flyway sort version numbers?

    https://stackoverflow.com/questions/19984397/how-does-flyway-sort-version-numbers In one word: numer ...

  7. MyBatis使用小案例

    首先回顾一下MyBatis封装简化Dao层连接数据库操作的顺序. 首先MyBatis是一个引入的jar包,还有一些依赖包,可能用不到的jar包,一并引入就好了,再多引入一个Juntil.jar测试包( ...

  8. hdu 1251 trie树

    统计难题 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131070/65535 K (Java/Others) Problem De ...

  9. MQ选型对比RabbitMQ RocketMQ ActiveMQ Kafka

    几种MQ产品说明: ZeroMQ :  扩展性好,开发比较灵活,采用C语言实现,实际上他只是一个socket库的重新封装,如果我们做为消息队列使用,需要开发大量的代码 RabbitMQ :结合erla ...

  10. Java中wait()和notify()方法的使用

    1. wait方法和notify方法 这两个方法,包括notifyAll方法,都是Object类中的方法.在Java API中,wait方法的定义如下: public final void wait( ...