Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。

什么是摘要算法呢?摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)。

摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡改过。

摘要算法之所以能指出数据是否被篡改过,就是因为摘要函数是一个单向函数,计算f(data)很容易,但通过digest反推data却非常困难。而且,对原始数据做一个bit的修改,都会导致计算出的摘要完全不同。

我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值:

import hashlib

md5 = hashlib.md5()
md5.update('how to use md5 in python hashlib?')
print md5.hexdigest() 计算结果如下:
d26a53750bc40b38b65a520292f69306

如果数据量很大,可以分块多次调用update(),最后计算的结果是一样的:

md5 = hashlib.md5()
md5.update('how to use md5 in ')
md5.update('python hashlib?')
print md5.hexdigest()

MD5是最常见的摘要算法,速度很快,生成结果是固定的128 bit字节,通常用一个32位的16进制字符串表示。另一种常见的摘要算法是SHA1,调用SHA1和调用MD5完全类似:

import hashlib

sha1 = hashlib.sha1()
sha1.update('how to use sha1 in ')
sha1.update('python hashlib?')
print sha1.hexdigest()

SHA1的结果是160 bit字节,通常用一个40位的16进制字符串表示。比SHA1更安全的算法是SHA256和SHA512,不过越安全的算法越慢,而且摘要长度更长。

摘要算法应用

任何允许用户登录的网站都会存储用户登录的用户名和口令。如何存储用户名和口令呢?方法是存到数据库表中:

name    | password
--------+----------
michael | 123456
bob | abc999
alice | alice2008

如果以明文保存用户口令,如果数据库泄露,所有用户的口令就落入黑客的手里。此外,网站运维人员是可以访问数据库的,也就是能获取到所有用户的口令。正确的保存口令的方式是不存储用户的明文口令,而是存储用户口令的摘要,比如MD5:

username | password
---------+---------------------------------
michael | e10adc3949ba59abbe56e057f20f883e
bob | 878ef96e86145580c38c87f0410ad153
alice | 99b1c2188db85afee403b1536010c2c9

考虑这么个情况,很多用户喜欢用123456,888888,password这些简单的口令,于是,黑客可以事先计算出这些常用口令的MD5值,得到一个反推表:

'e10adc3949ba59abbe56e057f20f883e': '123456'
'21218cca77804d2ba1922c33e0151105': '888888'
'5f4dcc3b5aa765d61d8327deb882cf99': 'password'

这样,无需破解,只需要对比数据库的MD5,黑客就获得了使用常用口令的用户账号。

对于用户来讲,当然不要使用过于简单的口令。但是,我们能否在程序设计上对简单口令加强保护呢?

由于常用口令的MD5值很容易被计算出来,所以,要确保存储的用户口令不是那些已经被计算出来的常用口令的MD5,这一方法通过对原始口令加一个复杂字符串来实现,俗称“加盐”:

hashlib.md5("salt".encode("utf8"))

经过Salt处理的MD5口令,只要Salt不被黑客知道,即使用户输入简单口令,也很难通过MD5反推明文口令。

但是如果有两个用户都使用了相同的简单口令比如123456,在数据库中,将存储两条相同的MD5值,这说明这两个用户的口令是一样的。有没有办法让使用相同口令的用户存储不同的MD5呢?

如果假定用户无法修改登录名,就可以通过把登录名作为Salt的一部分来计算MD5,从而实现相同口令的用户也存储不同的MD5。

摘要算法在很多地方都有广泛的应用。要注意摘要算法不是加密算法,不能用于加密(因为无法通过摘要反推明文),只能用于防篡改,但是它的单向计算特性决定了可以在不存储明文口令的情况下验证用户口令。

hashlib 算法介绍的更多相关文章

  1. 【原创】机器学习之PageRank算法应用与C#实现(1)算法介绍

    考虑到知识的复杂性,连续性,将本算法及应用分为3篇文章,请关注,将在本月逐步发表. 1.机器学习之PageRank算法应用与C#实现(1)算法介绍 2.机器学习之PageRank算法应用与C#实现(2 ...

  2. KNN算法介绍

    KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思. 算法描述 KNN是一种分类算法,其基本思想是采用测量不同特征值之间的距离方法进行分类. 算法过程如下: 1.准备样本数据集( ...

  3. ISP基本框架及算法介绍

    什么是ISP,他的工作原理是怎样的? ISP是Image Signal Processor的缩写,全称是影像处理器.在相机成像的整个环节中,它负责接收感光元件(Sensor)的原始信号数据,可以理解为 ...

  4. Python之常见算法介绍

    一.算法介绍 1. 算法是什么 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输 ...

  5. RETE算法介绍

    RETE算法介绍一. rete概述Rete算法是一种前向规则快速匹配算法,其匹配速度与规则数目无关.Rete是拉丁文,对应英文是net,也就是网络.Rete算法通过形成一个rete网络进行模式匹配,利 ...

  6. H2O中的随机森林算法介绍及其项目实战(python实现)

    H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...

  7. STL 算法介绍

    STL 算法介绍 算法概述 算法部分主要由头文件<algorithm>,<numeric>和<functional>组成.        <algorithm ...

  8. Levenshtein字符串距离算法介绍

    Levenshtein字符串距离算法介绍 文/开发部 Dimmacro KMP完全匹配算法和 Levenshtein相似度匹配算法是模糊查找匹配字符串中最经典的算法,配合近期技术栏目关于算法的探讨,上 ...

  9. 机器学习概念之特征选择(Feature selection)之RFormula算法介绍

    不多说,直接上干货! RFormula算法介绍: RFormula通过R模型公式来选择列.支持R操作中的部分操作,包括‘~’, ‘.’, ‘:’, ‘+’以及‘-‘,基本操作如下: 1. ~分隔目标和 ...

随机推荐

  1. Linux内核gpiolib注册建立过程

    1.相关的数据结构 struct s3c_gpio_chip { // 这个结构体是三星在移植gpiolib时封装的一个结构体 用来描述一组gpio端口信息 struct gpio_chip chip ...

  2. (精华)将json数组和对象转换成List和Map(小龙哥和牛徳鹤的对话)

    将java标准的数据结构ArrayList和HashMap转换成json对象和数组很简单 只需要JSONArray.fromObject(obj);或者JSONObject.fromObject(ob ...

  3. fb远程连接服务器调试,碉堡了

    开发中经常碰到本地代码没问题,上传到服务器上就有有问题, 这个时候调试变的很麻烦,放个textField自己保存日志这种方式调试的都是. 今天刚学了远程连接服务器,adobe真是牛逼坏了啊. 新增一个 ...

  4. 【linux】centos6.5搭建svn

    1.检查是否已安装 rpm -qa subversion 如果要卸载旧版本: yum remove subversion 2.安装 yum install subversion PS:yum inst ...

  5. XSS漏洞攻击原理与解决办法

    转自:http://www.frostsky.com/2011/10/xss-hack/ 对于的用户输入中出现XSS漏洞的问题,主要是由于开发人员对XSS了解不足,安全的意识不够造成的.现在让我们来普 ...

  6. Nginx+tomcat+redis 集群session共享

    插件资源下载地址:https://github.com/ran-jit/tomcat-cluster-redis-session-manager/releases/tag/2.0.2 一.前置条件 J ...

  7. ffmpeg+nginx+video实现rtsp流转hls流,通过H5查看监控视频

    一.FFmpeg下载:http://ffmpeg.zeranoe.com/builds/ 下载并解压FFmpeg文件夹,配置环境变量:在“Path”变量原有变量值内容上加上d:\ffmpeg\bin, ...

  8. Charles使用1

    Charles是一款比较常用的全平台的网络封包街区工具,而我们在做移动开发的时候,我们为了调试.测试.分析等目的,经常需要和服务端的网络通讯协议打交道.Charles可以帮我们截取网络数据包来进行分析 ...

  9. HTTP Error: 413 Request Entity Too Large的解决

    昨天在使用PHP的CURL调用另一个项目的API:A时,出现了HTTP Error: 413 Request Entity Too Large的错误.而调用另一个API:B则没有这个错误. A的API ...

  10. Hive的基本介绍

    Hive最初是应Facebook每天产生的海量新兴社会网络数据进行管理和机器学习的需求而产生和发展的.那么,到底什么是Hive,我们先看看Hive官网Wiki是如何介绍Hive的(https://cw ...