洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪
题目背景
从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼。
帕琪能熟练使用七种属性(金、木、水、火、土、日、月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从而唱出强力的魔法。比如说为了加强攻击力而将火和木组合,为了掩盖弱点而将火和土组合等等,变化非常丰富。
题目描述
现在帕琪与强大的夜之女王,吸血鬼蕾咪相遇了,夜之女王蕾咪具有非常强大的生命力,普通的魔法难以造成效果,只有终极魔法:帕琪七重奏才能对蕾咪造成伤害。帕琪七重奏的触发条件是:连续释放的7个魔法中,如果魔法的属性各不相同,就能触发一次帕琪七重奏。
现在帕琪有7种属性的能量晶体,分别为\(a_1,a_2,a_3,a_4,a_5,a_6,a_7\)(均为自然数),每次释放魔法时,会随机消耗一个现有的能量晶体,然后释放一个对应属性的魔法。
现在帕琪想知道,她释放出帕琪七重奏的期望次数是多少,可是她并不会算,于是找到了学\(OI\)的你
输入输出格式
输入格式:
一行7个数字,\(a_1,a_2,a_3,a_4,a_5,a_6,a_7\)
输出格式:
一个四舍五入保留3位的浮点数
数据范围:
对于30%的测试点,\(a_1+a_2+a_3+a_4+a_5+a_6+a_7<=10\)
对于100%的测试点,\(a_1+a_2+a_3+a_4+a_5+a_6+a_7<=10^9\)
UDT:2018.9.25
之前写的有不小问题,居然没人提。。
今天被期望虐惨了,去洛谷找了道颜色最低的期望题
然后...不会
好吧,正题...
首先直接考虑对于取的前7个能量晶体
设\(N=\sum_{i=1}^7 a_i\)
考虑前7个一连串取出了\(a_1,a_2,a_3,..a_7\)的概率
为\(\frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6}\)
因为是条件概率,所以样本空间减少了(n-x)
对条件概率:
简单一点的解释是,B在A发生的条件下发生的概率。
举个栗子,掷色子第一次投6概率为1/6,为A事件,第二次投6概率仍为1/6,为B事件。如果把两次投掷产生的一个结果算成一个最终状态,那么连续的状态AB发生的概率为1/36,也即是B在A发生的条件下发生的概率。
然后我们对取出1-7的式子发现,如果我们不按1-7的顺序取,分子分母并没有变化
那么直接按照排列组合,把所有顺序的全部统计
即\(7! \times \frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6}\)
但其实后面每七位对应的答案都是这样,下面讲为什么
在考虑之后怎么取之前,我们先想一个问题。
你班要选择投票一个人,在班花喵面前吃巧克力,然后班主任拿了一个盒盒让你们摸球球,里面有1个红球和29个白球(你班30人),抽到红球的人就有了这个至高无上的权利,一个个的去抽,那么顺序不一样的话,是公平的吗??
当然...是了
第一个人抽中的概率是 \(\frac {1}{30}\)
第二个人抽中的概率是 \(\frac {29}{30} \times \frac {1}{29}\)
第三个人抽中的概率是 \(\frac {29}{30} \times \frac {28}{29} \times \frac {1}{28}\)
...
有了这些我们可以感性理解在这个题中每七位都是一样的统计了
以上只是提供一个感性的类似的说明方法,和下面的并非直接相关
然后我们考虑用类似的方法把它说清楚
如果第一个取出\(a_1\)
我们考虑它取出的合法的第2-8个,就可以再次放招了
概率为
\(\frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6} \times \frac{a_1-1}{N-7}\)
同理组合有\(7!\)种(这\(7!\)是确定了首位而\(2-8\)不定的情况)
如果第一个取\(a_2\)
概率为
\(\frac{a_2}{N} \times \frac{a_1}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6} \times \frac{a_2-1}{N-7}\)
我们把第一个取出的7种可能加在一起
发现末项加起来化简是1
即\(\sum_{i=1}^7 \frac{a_i-1}{N-7}=1\)
于是对第2-8位的贡献化简结果就是\(7! \times \frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times \frac{a_7}{N-6}\)
所以最终答案就是(乘上了\(N-6\)项)
\(7! \times \frac{a_1}{N} \times \frac{a_2}{N-1} \times \frac{a_3}{N-2} \times \frac{a_4}{N-3} \times \frac{a_5}{N-4} \times \frac{a_6}{N-5} \times {a_7}\)
Code:
#include <cstdio>
double a[8],s,ans=1;
int main()
{
for(int i=1;i<=7;i++)
{
scanf("%lf",a+i);
s+=a[i];
}
for(int i=1;i<=6;i++)
ans=ans*a[i]/(s+1-i)*double(i);
ans=ans*a[7]*7.0;
printf("%.3lf\n",ans);
return 0;
}
2018.7.16
洛谷 P3802 小魔女帕琪 解题报告的更多相关文章
- 洛谷P3802 小魔女帕琪
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P3802 小魔女帕琪
传送门 题目大意:7个东西,每个有ai个,只有选7次 把7个东西都选到了才行. 题解:7!排列数*每次选择的概率 代码: #include<iostream> #include<cs ...
- Luogu P3802 小魔女帕琪
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- P3802 小魔女帕琪 期望
P3802 小魔女帕琪 期望 题面 题意稍微不清楚,题中的a[i]指的是属性i的魔法有a[i]个. 题目大意:有7种魔法,每种数量a[i],每次随机放出一个魔法,问放完为止出现7次魔法都不相同的期望次 ...
- Luogu P3802 小魔女帕琪(期望)
P3802 小魔女帕琪 题意 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组 ...
- P3802 小魔女帕琪 概率与期望
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- P3802 小魔女帕琪
传送门 考虑前面7个魔法 如果前面七个魔法各不相同,那么就能完成一次帕琪七重奏 设 A=a1*a2*...*a7,S=a1+a2+...+a7,B=S*(S-1)*...*(S-6) 对于不同的施法顺 ...
随机推荐
- 基于Cocos2d-x-1.0.1的飞机大战游戏开发实例(中)
接<基于Cocos2d-x-1.0.1的飞机大战游戏开发实例(上)> 三.代码分析 1.界面初始化 bool PlaneWarGame::init() { bool bRet = fals ...
- WebGL中使用window.requestAnimationFrame创建主循环
今天总结记录一下WebGL中主循环的创建和作用.我先说明什么是主循环,其实单纯的webgl不存在主循环这个概念,这个概念是由渲染引擎引入的,主循环就是利用一个死循环或无截止条件的递归达到定时刷新can ...
- 人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我”
人脸检测及识别python实现系列(6)——终篇:从实时视频流识别出“我” 终于到了最后一步,激动时刻就要来临了,先平复一下心情,把剩下的代码加上,首先是为Model类增加一个预测函数: #识别人脸 ...
- Nginx内容缓存
本节介绍如何启用和配置从代理服务器接收的响应的缓存.主要涉及以下内容 - 缓存介绍 启用响应缓存 涉及缓存的NGINX进程 指定要缓存的请求 限制或绕过缓存 从缓存中清除内容 配置缓存清除 发送清除命 ...
- tendermint 跟tikv结合
import ( "fmt" "github.com/allegro/bigcache" "github.com/kooksee/usmint/cmn ...
- JS中自定义事件的使用与触发
1. 事件的创建 JS中,最简单的创建事件方法,是使用Event构造器: var myEvent = new Event('event_name'); 但是为了能够传递数据,就需要使用 CustomE ...
- Cross origin requests are only supported for protocol schemes: http, data, chrome,chrome-extension的问题
Cross origin requests are only supported for protocol schemes: http, data, chrome,chrome-extension的问 ...
- centos下部署jenkins
本文摘抄自:https://www.cnblogs.com/edward2013/p/5284503.html ,请支持原版! 1. 安装JDK 1 yum -y install java 2.安装 ...
- php memcache 使用学习
Memcache是什么Memcache是danga.com的一个项目,最早是为 LiveJournal 服务的,目前全世界不少人使用这个缓存项目来构建自己大负载的网站,来分担数据库的压力.它可以应对任 ...
- 王者荣耀交流协会 - 第6次Scrum会议
Scrum master :刘耀泽 补充:由于上次的scrum会议博客没有按时交上去,因此在这里给出上次scrum会议的链接: http://www.cnblogs.com/rensijia/p/76 ...