Description

Tweetuzki 有一个袋子,袋子中有 \(N\) 个无差别的球。Tweetuzki 每次随机取出一个球后放回。求取遍所有球的期望次数。

取遍是指,袋子中所有球都被取出来过至少一次。

Input

一行一个整数 \(N\)

Output

一行一个整数,表示期望次数对 \(200403013\) 取模的结果

Hint

\(1~\leq~N~\leq~10^7\)

Solution

期望嘛,就是你xjb乱推好几个看起来很靠谱事实上最多有一个是对的甚至可能一个也不对的式子,然后用蒙特卡洛方法拍一拍,挑一个最靠谱的交上去

感谢@_rqy提供指导

先给出结论:

\[E(n)~=~n~\times~(\sum_{i=1}^{n}~\frac{1}{i})
\]

证明如下:

引理:对于一次试验,有 \(p~(0~\leq~p~\leq~1)\) 的概率成功,有 \(1-p\) 的概率不成功,如果一次试验后不成功则重复进行试验,否则停止。则期望在 \(\frac{1}{p}\) 步后停止试验

证明:

设期望 \(x\) 步后停止试验,根据已知以及期望的线性相加性,可得方程:

\[x~=~1~+~p~\times~0~+~(1~-~p)~\times~x
\]

上述方程的直观解释是当前进行完一步后有 \(p\) 的概率再进行 \(0\) 次(停止),\(1~-~p\) 的概率继续进行,由于下次试验和这次试验完全相同,所以有 \(1~-~p\) 的概率期望再进行 \(x\) 次。

解方程,得

\[x~=~\frac{1}{p}
\]

引理证毕。

于是考虑摸球,首先有 \(n\) 个球没有被摸到的时候,摸一次摸到新球的概率为 \(1\),根据引理,期望摸 \(1\) 次。

然后剩下 \(n~-~1\) 个球没有被摸到,摸一次摸到新球的概率为 \(\frac{n-1}{n}\),根据引理,期望摸 \(\frac{n}{n-1}\) 次。

然后剩下 \(n~-~2\) 个球没有摸到,摸一次摸到新球的概率为 \(\frac{n-2}{n}\) ,根据引理,期望摸 \(\frac{n}{n-2}\) 次。

……(一位读者及时砸坏了复读机,停止了复读)

按照球的个数进行数学归纳,根据期望的可加性(非线性相加性),可以得到摸遍 \(n\) 个球的期望

\[E(n)~=~n~+~\frac{n}{n-1}~+~\frac{n}{n-1}~+~\dots~+~\frac{n}{1}
\]

提取公因数 \(n\),可得

\[E(n)~=~n~\times~(\sum_{i=1}^{n}~\frac{1}{i})
\]

证毕。

然鹅最后一个式子只是为了让结论变得优美一点,事实上用倒数第二个式子就可以做题了233

于是先筛一遍逆元,然后求答案即可。

Code

#include <cstdio>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
} template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
} template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
} namespace OPT {
char buf[120];
} template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
} const int maxn = 10000010;
const int MOD = 20040313; int n, ans;
int inv[maxn]; void GetInv(); int main() {
freopen("1.in", "r", stdin);
qr(n);
GetInv();
for (rg int i = 0; i < n; ++i) {
ans = (ans + 1ll * n * inv[n - i]) % MOD;
}
qw(ans, '\n', true);
} void GetInv() {
inv[1] = 1;
for(int i = 2; i <= n; ++i) inv[i] = 1ll * (MOD - MOD / i) * inv[MOD % i] % MOD;
}

Summary

对于一次试验,有 \(p~(0~\leq~p~\leq~1)\) 的概率成功,有 \(1-p\) 的概率不成功,如果一次试验后不成功则重复进行试验,否则停止。则期望在 \(\frac{1}{p}\) 步后停止试验

【期望】【P5081】Tweetuzki 爱取球的更多相关文章

  1. [洛谷P5081]Tweetuzki 爱取球

    题目大意:有$n$个球,每一次取一个球然后放回,问期望多少次取遍所有球 题解:令$f_i$表示已经取了$i$种球,还要取的次数的期望.$f_i=\dfrac in(f_i+1)+\dfrac{n-i} ...

  2. THUSC2019 退役记

    Day -inf 这一个半月潜心搞文化课,把文化课的坑填上了不少,我文化课的底子真是薄啊 一年前没想过我还挺有希望进队的,最后还差点冲上 一年后说不定会发现我搞文化课也能搞得不错呢? 一切都是未知 t ...

  3. [BZOJ4204] 取球游戏(期望)

    DarkBZOJ4204 (题面来源) [题目描述] 有\(m\)个球,一开始每个球均有一个初始标号,标号范围为\(1-n\)且为整数,标号为\(i\)的球有\(a_{i}\)个,并保证\(Σa_{i ...

  4. [学习笔记]概率&期望

    概率的性质 非负性:对于每一个事件$A,0\;\leq\;P(A)\;\leq\;1$. 规范性:对于必然事件$S,P(S)=1$;对于不可能事件$A,P(A)=0$. 容斥性:对于任意两个事件$A, ...

  5. HDU 5810 Balls and Boxes(盒子与球)

     Balls and Boxes(盒子与球) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...

  6. lightoj 1408 Batting Practice (概率问题,求期望,推公式)

    题意:一个人若连续进k1个球或连续不进k2个球,游戏结束,给出这个人不进球的概率p(注意:是不进球!!!),求到游戏结束时这个投球个数的期望. 不进球概率为p,进概率 q=1-p.设 f[i] 表示连 ...

  7. Tsinsen-A1489 抽奖 【数学期望】

    乔明达太神,其实已经题解非常清楚了,我再推一遍吧. 题目意思相当于有n个盒子,无差别投m次球,每个盒子的得分为每个盒子里的球的个数. 第一问: 假设这个球放在了第i个盒子里,那么 ∆ans = (mi ...

  8. TsinsenA1489 抽奖 【期望】

    题目分析: 问题可以转化成将m个球放进n个盒子里,每个盒子的贡献为盒子中球数的平方. 第一问考虑增量. 对于一个原本有$x$个球的盒子,新加一个球的贡献是$2x+1$.期望条件下仍然满足. 第$i$个 ...

  9. BZOJ2554 color 【概率DP】【期望DP】

    题目分析: 好题. 一开始看错题了,以为是随机选两个球,编号在前的染编号在后的. 但这样仍然能获得一些启发,不难想到可以确定一个颜色,剩下的颜色是什么就无关了. 那么答案就是每种颜色的概率乘以期望.概 ...

随机推荐

  1. APP端测试,常见功能测试点汇总

    除去每个产品和版本不同的业务需求以及功能,针对于大多数的APP的共同点和移动设备的特性,本文总结了一些APP功能测试中经常遇见,需要考虑到的测试点以共参考 一.安装和卸载 应用的安装和卸载在任何一款A ...

  2. LeeCode_01_Two sum

    Two Sum Given an array of integers, return indices of the two numbers such that they add up to a spe ...

  3. 408. Add Binary【LintCode java】

    Description Given two binary strings, return their sum (also a binary string). Example a = 11 b = 1 ...

  4. 【Python 开发】Python目录

    目录: [Python开发]第一篇:计算机基础 [Python 开发]第二篇 :Python安装 [Python 开发]第三篇:python 实用小工具

  5. linux中使用wget设置参数防止中文乱码问题

    在linux中一般会用到wget命令来请求远程的某个文件,此时,文件中会有一些中文字符或者中文汉字,要保持不出现"乱码"就需要在后面加上参数,如下图所示: 其中的 --restri ...

  6. 单源最短路——Bellman-Ford算法

    1.Dijkstra的局限性 Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的. 列如以 ...

  7. 欢迎来怼--第二十三次Scrum会议

    一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/11 17:20~17:55,总计35min. 地 ...

  8. 暑假App

    简介 实现了一个计时器APP,程序界面简洁,只有一个时间显示区域和两个图片按钮,一个按钮是开始/暂停,另一个按钮是停止. 功能介绍 一个显示界面,当最小计时单位为0.1秒时,显示为:分钟:秒:0.1秒 ...

  9. Python:字符串操作总结

    所有标准的序列操作(索引.分片.乘法.判断成员资格.求长度.取最小值最大值)对字符串同样适用,且字符串是不可变的. 一.字符串格式化 转换说明符 [注]: 这些项的顺序至关重要 (1)%字符:标记转换 ...

  10. PyCharm如何设置源代码字体的大小

    改源代码大小 1.File→Settings→Editor→Colors&Fonts→Font 2.首先得需要Save as一个Scheme,接下来才可以修改字体,名字可以任意取 改运行字体的 ...