作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/unique-binary-search-trees/description/

题目描述

Given n, how many structurally unique BST’s (binary search trees) that store values 1...n?

For example,

Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

题目大意

给了一个数字n,问n个节点的二叉树有多少种?

解题方法

记忆化递归

思路:从1...n中找出一个i作为根节点,比i小的数1...i-1作为左子树,比i大的数i+1...n作为右子树,左子树的排列和右子树的排列的乘积是此时的数目。

因为直接递归会超时,所以加上了记忆化搜索的方法,这样就快的多了。

class Solution(object):
def __init__(self):
self.dp = dict() def numTrees(self, n):
"""
:type n: int
:rtype: int
"""
if n in self.dp:
return self.dp[n]
if n == 0 or n == 1:
return 1
ans = 0
for i in range(1, n + 1):
ans += self.numTrees(i - 1) * self.numTrees(n - i)
self.dp[n] = ans
return ans

使用C++代码和上面类似,同样使用记忆化搜索能够完成。只不过,这里需要注意的一点是,左边的孩子数目是i的时候,右边的孩子数目因该是n - 1 - i,因为要去掉根节点。

代码如下:

class Solution {
public:
int numTrees(int n) {
if (n == 0) return 1;
if (m_.count(n)) return m_[n];
int res = 0;
for (int i = 0; i < n; i++) {
int left = numTrees(i);
int right = numTrees(n - 1 - i);
res += left * right;
}
return m_[n] = res;
}
private:
unordered_map<int, int> m_;
};

动态规划

同样是上面的思路,如果使用动态规划去做,可以设dp[i]是i个节点的二叉树有多少种组合。那么,很明显和上面解法一样的,dp[i]等于左子树有0个节点,左子树有1个节点,左子树有2个节点……等等情况下的和。对于左右子树的组合方式是独立事件,所以总的组合数是左右子树相乘的关系。

完整的推导在下面,参照了:http://blog.csdn.net/u012501459/article/details/46622501

给定一个数n,求1到n这些数可以构成多少棵二叉树。
给定一个序列1.....n,为了构造所有二叉树,我们可以使用1......n中的每一个数i作为根节点,自然1......(i-1)必然位于树的左子树中,(i+1).....n位于树的右子树中。然后可以递归来构建左右子树,由于根节点是唯一的,所以可以保证构建的二叉树都是唯一的。 使用两个状态来记录: G(n):长度为n的序列的所有唯一的二叉树。 F(i,n),1<=i<=n:以i作为根节点的二叉树的数量。 G(n)就是我们要求解的答案,G(n)可以由F(i,n)计算而来。 G(n)=F(1,n)+F(2,n)+...+F(n,n) (1) G(0)=1,G(1)=1 对于给定的一个序列1.....n,我们取i作为它的根节点,那么以i作为根节点的二叉树的数量F(i)可以由下面的公式计算而来: F(i,n)=G(i-1)*G(n-i) 1<=i<=n (2) 综合公式(1)和公式(2),可以看出: G(n) = G(0) * G(n-1) + G(1) * G(n-2) + … + G(n-1) * G(0) 这就是上面这个问题的答案。

答案:

class Solution(object):
def numTrees(self, n):
"""
:type n: int
:rtype: int
"""
dp = [1, 1]
for i in xrange(2, n + 1):
count = 0
for j in xrange(i):
count += dp[j] * dp[i - j - 1]
dp.append(count)
return dp.pop()

上面的做法的C++代码如下:

class Solution {
public:
int numTrees(int n) {
// how many trees if the total tree has dp[i] nodes.
vector<int> dp(n + 1);
dp[0] = dp[1] = 1;
for (int i = 2; i < n + 1; i ++) {
for (int j = 0; j < i; j++) {
dp[i] += dp[j] * dp[i - 1 - j];
}
}
return dp[n];
}
};

卡特兰数

卡塔兰数的一般项公式为

h(0)=1,h(1)=1,卡塔兰数数满足递归式:

h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2)这是n阶递归关系;

该递推关系的解为:

h(n)=C(2n,n)/(n+1)=P(2n,n)/(n+1)!=(2n)!/(n!*(n+1)!) (n=1,2,3,...)

代码如下:

class Solution {
public:
int numTrees(int n) {
// how many trees if the total tree has dp[i] nodes.
long long res = 1;
for (int i = n + 1; i <= 2 * n; i++) {
res = res * i / (i - n);
}
return res / (n + 1);
}
};

卡特兰数的前20项是固定的,也就可以直接返回对应的数字即可。

class Solution {
public:
int numTrees(int n) {
// how many trees if the total tree has dp[i] nodes.
vector<int> dp = {1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190};
return dp[n];
}
};

日期

2018 年 2 月 25 日
2018 年 12 月 31 日 —— 2018年最后一天!

【LeetCode】96. Unique Binary Search Trees 解题报告(Python & C++)的更多相关文章

  1. [LeetCode] 96. Unique Binary Search Trees 唯一二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  2. 52. leetcode 96. Unique Binary Search Trees

    96. Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) tha ...

  3. leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses

    96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...

  4. [LeetCode] 96. Unique Binary Search Trees(给定一个数字n,有多少个唯一二叉搜索树) ☆☆☆

    [Leetcode] Unique binary search trees 唯一二叉搜索树 Unique Binary Search Trees leetcode java 描述 Given n, h ...

  5. [LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Example ...

  6. Java [Leetcode 96]Unique Binary Search Trees

    题目描述: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For ...

  7. leetcode 96 Unique Binary Search Trees ----- java

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  8. [leetcode]96. Unique Binary Search Trees给定节点形成不同BST的个数

    Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Input: ...

  9. [leetcode] 96 Unique Binary Search Trees (Medium)

    原题 字母题 思路: 一开始妹有一点思路,去查了二叉查找树,发现有个叫做卡特兰数的东西. 1.求可行的二叉查找树的数量,只要满足中序遍历有序. 2.以一个结点为根的可行二叉树数量就是左右子树可行二叉树 ...

随机推荐

  1. Linux— rpm 命令

    rpm命令是RPM软件包的管理工具.rpm原本是Red Hat Linux发行版专门用来管理Linux各项套件的程序,由于它遵循GPL规则且功能强大方便,因而广受欢迎.逐渐受到其他发行版的采用.RPM ...

  2. 【模板】负环(SPFA/Bellman-Ford)/洛谷P3385

    题目链接 https://www.luogu.com.cn/problem/P3385 题目大意 给定一个 \(n\) 个点有向点权图,求是否存在从 \(1\) 点出发能到达的负环. 题目解析 \(S ...

  3. 点击下拉选择触发事件【c#】

    <asp:DropDownList ID="ddlRegionList" runat="server" AutoPostBack="true&q ...

  4. TD课程通最终版本体验

    功能上,新版本增加了学校教室的上课情况,有无课程可以清楚查询,如下图: 在添加课程的设置上有改进,相比于之前编辑课程后不能保存,新版本在可保存的基础上又增加了登陆教务系统的功能,学生使用更加方便快捷, ...

  5. Shell 输出第五行的内容

    目录 Shell 输出第五行的内容 题目 题解-awk 题解-sed Shell 输出第五行的内容 题目 写一个 bash脚本以输出一个文本文件 nowcoder.txt 中第5行的内容. 示例: 假 ...

  6. 日常Java测试 2021/11/14

    课堂测试三 package word_show; import java.io.*;import java.util.*;import java.util.Map.Entry; public clas ...

  7. day14 linux三剑客之sed命令

    day14 linux三剑客之sed命令 sed命令 Sed 主要用来自动编辑一个或多个文件.简化对文件的反复操作.编写转换程序等. sed(流式编辑器) : sed主要用来修改文件. 1.sed命令 ...

  8. flink03-----1.Task的划分 2.共享资源槽 3.flink的容错

    1. Task的划分 在flink中,划分task的依据是发生shuffle(也叫redistrubute),或者是并行度发生变化 1.  wordcount为例 package cn._51doit ...

  9. awk的基本用法

    最近遇到导入的csv文件首行为日期,但需要将日期作为列导入到数据库中,直接使用ctl文件好像无法实现,了解到awk这个强大的命令. 导入的CSV文件除了首行为日期,其他的都是格式相同的.需要将首行单独 ...

  10. Hibernate 错误的问题

    配了好几次的Hibernate,老是在create BeanFactory的时候fail.我是用MyEclipse自带的HIbernate,直接加进去的. private static final T ...