前言

  • 只有Innodb和myisam存储引擎能用全文索引(innodb支持全文索引是从mysql5.6开始的)
  • char、varchar、text类型字段能创建全文索引(fulltext index type)
  • 全文索引的基于关键词的,如何区分不同的关键词了,就要用到分词(stopword)
  • 英文单词用空格,逗号进行分词;中文分词不方便(一个句子不知道怎样区分不同的关键词)
  • 内置分词解析器ngram支持中文,日文,韩文(将句子分成固定数字的短语)
  • 当对表写入大量数据时,写入数据后再创建全文索引的速度更快(减少了维护索引的开销)
  • 全文索引的原理的倒排索引(一种数据结构),一般利用关联数组,在辅助表中存储单词与文档中所在位置的映射

使用

用MATCH() … AGAINST 方式来进行搜索

match()表示搜索的是那个列,against表示要搜索的是那个字符串

查看默认的分词(以这些词来区分不同的关键词);也可以自定义分词,以这些词来区分不同的关键词SELECT * FROM information_schema.INNODB_FT_DEFAULT_STOPWORD;

三种类型的全文搜索方式

natural language search(自然语言搜索)

通过MATCH AGAINST 传递某个特定的字符串来进行检,默认方式

boolean search(布尔搜索)

为检索的字符串增加操作符,如“+”表示必须包含,"-"不包含,"*" 表示通配符,即使传递的字符串较小或出现在停词中,也不会被过滤掉

query expansion search(查询扩展搜索)

搜索字符串用于执行自然语言搜索,然后,搜索返回的最相关行的单词被添加到搜索字符串,并且再次进行搜索,查询将返回来自第二个搜索的行

相关参数

配置相关参数

innodb_ft_min_token_size默认3,表示最小3个字符作为一个关键词,增大该值可减少全文索引的大小

innodb_ft_max_token_size默认84,表示最大84个字符作为一个关键词,限制该值可减少全文索引的大小

ngram_token_size默认2,表示2个字符作为内置分词解析器的一个关键词,如对“abcd”建立全文索引,关键词为'ab','bc','cd'

当使用ngram分词解析器时,innodb_ft_min_token_size和innodb_ft_max_token_size 无效

注意 这三个参数均不可动态修改,修改了这些参数,需重启MySQL服务,并重新建立全文索引

测试innodb引擎使用全文索引

准备

1、目标

  • 查询文章中是否含有某个关键词;一系列文章出现某个关键词的次数
  • 查询文章的标题是否含有某个关键词

2、设置以下参数减少磁盘IO压力

SET GLOBAL sync_binlog=100;
SET GLOBAL innodb_flush_log_at_trx_commit=2;

3、导入1kw 数据进行测试全文索引

该数据来源网上搜索

https://pan.baidu.com/s/1aaB1R3bkBGZRMEx0o6T61w 提取码:60l7

4、某个文章表 的结构

使用myloader 多线程导入测试数据

-- 先把测试数据进行解压
tar -zxf mydumper_dump_article.tar.gz
time myloader -u $user -p $passwd -S $socket -t 32 -d /datas/dump_article -v 3

5、导入数据后总数据量和数据文件、索引文件大小

SELECT COUNT(*) FROM `article`;
+----------+
| COUNT(*) |
+----------+
| 10000000 |
+----------+
1 row in set (7.85 sec)

SELECT     table_name,   CONCAT(FORMAT(SUM(data_length) / 1024 / 1024,2),'M') AS dbdata_size,   CONCAT(FORMAT(SUM(index_length) / 1024 / 1024,2),'M') AS dbindex_size,   CONCAT(FORMAT(SUM(data_length + index_length) / 1024 / 1024 / 1024,2),'G') AS `db_size(G)`,   AVG_ROW_LENGTH,table_rows,update_time FROM   information_schema.tables WHERE table_schema = DATABASE() and table_name='article';
+------------+-------------+--------------+------------+----------------+------------+---------------------+
| table_name | dbdata_size | dbindex_size | db_size(G) | AVG_ROW_LENGTH | table_rows | update_time         |
+------------+-------------+--------------+------------+----------------+------------+---------------------+
| article    | 3,710.00M   | 1,003.00M    | 4.60G      |            414 |    9388739 | 2019-07-05 15:31:37 |
+------------+-------------+--------------+------------+----------------+------------+---------------------+

使用默认方式创建全文索引

1、该表已有关键词字段(对文章内容的简述),并以“,”作为分词符

2、不建全文索引时搜索某个关键词

需要进行全表扫描

3、对关键词字段创建全文索引(以 , 作为分词)

my.cnf配置文件中设置innodb_ft_min_token_size,并重启MySQL服务(最小两个字符作为一个关键词,默认三个字符作为一个关键词)

[mysqld]
innodb_ft_min_token_size=2

3.1 设置自定义stopwords(即分词)

USE mysql;
CREATE TABLE my_stopwords(VALUE VARCHAR(30)) ENGINE = INNODB;
INSERT INTO my_stopwords(VALUE) VALUE (',');
SET GLOBAL innodb_ft_server_stopword_table = 'mysql/my_stopwords';

~

SHOW GLOBAL  VARIABLES WHERE Variable_name IN('innodb_ft_min_token_size','innodb_ft_server_stopword_table');
+---------------------------------+--------------------+
| Variable_name                   | Value              |
+---------------------------------+--------------------+
| innodb_ft_min_token_size        | 2                  |
| innodb_ft_server_stopword_table | mysql/my_stopwords |
+---------------------------------+--------------------+

3.2 创建全文索引

alter table article add fulltext index idx_full_keyword(keywords);
* [ ] Query OK, 0 rows affected, 1 warning (1 min 27.92 sec)
* [ ] Records: 0  Duplicates: 0  Warnings: 1

3.3 剩余磁盘空间需足够,原表4.6G,剩余5.7G磁盘,添加全文索引也会失败

3.4 利用创建的全文索引进行查询某个关键词出现的次数

查询响应时间有了很大的提升,只需0.05s;使用where keywords like '%时尚%' 需要7.56s。推荐阅读:MySQL性能优化实践(很全面,值得收藏)

3.5 如需同时完全匹配多个关键词,用布尔全文搜索

表示完全匹配 "三里屯,北京" 的记录数

select count(*) from article where match(keywords)  against('+三里屯,北京' in boolean mode);
+----------+
| count(*) |
+----------+
|        1 |
+----------+
1 row in set (0.06 sec)

表示匹配“三里屯” 或者 “北京”的记录数

select count(*) from article where match(keywords)  against('三里屯,北京');
+----------+
| count(*) |
+----------+
|        8 |
+----------+
1 row in set (0.06 sec)

3.6 创建全文索引后,会创建一些其它文件

96K Jul 5 16:30 FTS_00000000000000a7_00000000000000c0_INDEX_1.ibd96K Jul 5 16:30 FTS_00000000000000a7_00000000000000c0_INDEX_2.ibd96K Jul 5 16:30 FTS_00000000000000a7_00000000000000c0_INDEX_3.ibd96K Jul 5 16:30 FTS_00000000000000a7_00000000000000c0_INDEX_4.ibd128K Jul 5 16:30 FTS_00000000000000a7_00000000000000c0_INDEX_5.ibd256K Jul 5 16:30 FTS_00000000000000a7_00000000000000c0_INDEX_6.ibd96K Jul 5 16:29 FTS_00000000000000a7_BEING_DELETED_CACHE.ibd96K Jul 5 16:29 FTS_00000000000000a7_BEING_DELETED.ibd96K Jul 5 16:30 FTS_00000000000000a7_CONFIG.ibd96K Jul 5 16:29 FTS_00000000000000a7_DELETED_CACHE.ibd96K Jul 5 16:29 FTS_00000000000000a7_DELETED.ibd

  • 前6个表示倒排索引(辅助索引表)
  • 第7,8个表示包含已删除文档的文档ID(DOC_ID),其数据当前正在从全文索引中删除
  • 第9个表示FULLTEXT索引内部状态的信息
  • 第10,11个表示包含已删除但尚未从全文索引中删除其数据的文档

使用ngram分词解析器创建全文索引

1、对title字段建立全文索引(该字段没有固定的stopwords 分词,使用ngram分词解析器)

需先在my.cnf 配置文件中设置ngram_token_size(默认为2,2个字符作为ngram 的关键词),并重启mysql服务

这里使用默认的 2

select title from article limit 10;
+------------------------------------------------------------------------------+
| title                                                                        |
+------------------------------------------------------------------------------+
| worth IT                                                                    |
|Launchpad 江南皮革厂小show                                                  |
|Raw 幕后罕见一刻 “疯子”被抬回后台                                           |
|Raw:公子大骂老爸你就是个绿茶  公子以一打四                                  |
|四组30平米精装小户型,海量图片,附户型图                                    |
|夜店女王性感烟熏猫眼妆                                                      |
|大秀哥重摔“巨石”强森                                                        |
|少女时代 崔秀英 服饰科普 林允儿 黄美英 金泰妍 郑秀晶                        |                                              
|德阳户外踏青,花田自助烧烤                                                  |
+------------------------------------------------------------------------------+

2、对title字段创建全文索引

alter table article add fulltext index ft_index_title(title) with parser ngram;
Query OK, 0 rows affected (3 min 29.22 sec)
Records: 0  Duplicates: 0  Warnings: 0

3、会创建倒排索引(title字段越长长,创建的倒排索引越大)

112M Jul 5 21:46 FTS_00000000000000a7_00000000000000cd_INDEX_1.ibd28M Jul 5 21:46 FTS_00000000000000a7_00000000000000cd_INDEX_2.ibd20M Jul 5 21:46 FTS_00000000000000a7_00000000000000cd_INDEX_3.ibd140M Jul 5 21:46 FTS_00000000000000a7_00000000000000cd_INDEX_4.ibd128M Jul 5 21:46 FTS_00000000000000a7_00000000000000cd_INDEX_5.ibd668M Jul 5 21:46 FTS_00000000000000a7_00000000000000cd_INDEX_6.ibd

4、不建立全文索引搜索title的某个关键词

5、使用全文索引搜索某个关键词

响应时间有很大的提升

6、注意当搜索的关键词字符数大于2 (ngram_token_size定义大小)会出现不一致问题

普通搜索,实际中出现该关键词的记录数为6

全文搜索,出现关键字的记录数为9443

实际出现该关键字的记录数为1

全文搜索出现该关键词的记录数为3202

结论

当mysql 某字段中有固定的stopword 分词(英文的空格符,中文的“,”"-"等),对该字段建立全文索引,能快速搜索出现某个关键词的相关记录信息,实现简单搜索引擎的效果

当mysql 某字段没有固定的stopword 分词,使用内置解析器ngram 可将字段值分成固定数量(ngram_token_size定义大小)的关键词快速进行搜索;当搜索的关键词的字符数量不等于ngram_token_size定义大小时,会出现与实际情况不一致的问题

全文索引能快速搜索,也存在维护索引的开销;字段长度越大,创建的全文索引也越大,会影响DML语句的吞吐量,可用专门的全文搜索引擎ES来做这件事

MySQL 全文索引实现一个简单版搜索引擎的更多相关文章

  1. 全栈前端入门必看 koa2+mysql+vue+vant 构建简单版移动端博客

    koa2+mysql+vue+vant 构建简单版移动端博客 具体内容展示 开始正文 github地址 <br/> 觉得对你有帮助的话,可以star一下^_^必须安装:<br/> ...

  2. 动手写一个简单版的谷歌TPU-矩阵乘法和卷积

    谷歌TPU是一个设计良好的矩阵计算加速单元,可以很好的加速神经网络的计算.本系列文章将利用公开的TPU V1相关资料,对其进行一定的简化.推测和修改,来实际编写一个简单版本的谷歌TPU.计划实现到行为 ...

  3. 动手写一个简单版的谷歌TPU-指令集

    系列目录 谷歌TPU概述和简化 基本单元-矩阵乘法阵列 基本单元-归一化和池化(待发布) TPU中的指令集 SimpleTPU实例: (计划中) 拓展 TPU的边界(规划中) 重新审视深度神经网络中的 ...

  4. 基于 Mysql 实现一个简易版搜索引擎

    前言 前段时间,因为项目需求,需要根据关键词搜索聊天记录,这不就是一个搜索引擎的功能吗? 于是我第一时间想到的就是 ElasticSearch 分布式搜索引擎,但是由于一些原因,公司的服务器资源比较紧 ...

  5. 使用Lucene.Net做一个简单的搜索引擎-全文索引

    Lucene.Net Lucene.net是Lucene的.net移植版本,是一个开源的全文检索引擎开发包,即它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎. ...

  6. python 搭建一个简单的 搜索引擎

    我把代码和爬好的数据放在了git上,欢迎大家来参考 https://github.com/linyi0604/linyiSearcher 我是在 manjaro linux下做的, 使用python3 ...

  7. mysql 如何创建一个简单的存储过程

    1 用mysql客户端登入2 选择数据库 mysql>use test3 查询当前数据库有哪些存储过程 mysql>show procedure status where Db='test ...

  8. 动手写一个简单版的谷歌TPU

    谷歌TPU是一个设计良好的矩阵计算加速单元,可以很好的加速神经网络的计算.本系列文章将利用公开的TPU V1(后简称TPU)相关资料,对其进行一定的简化.推测和修改,来实际编写一个简单版本的谷歌TPU ...

  9. 手写一个简单版的SpringMVC

    一 写在前面 这是自己实现一个简单的具有SpringMVC功能的小Demo,主要实现效果是; 自己定义的实现效果是通过浏览器地址传一个name参数,打印“my name is”+name参数.不使用S ...

随机推荐

  1. 【vue-08】vuex

    vuex的作用 简单理解,就是将多个组件共享的变量统一放到一个地方去管理,比如用户登录时的数据token. 快速上手 安装:npm install vuex 首先,我们在src文件夹下创建一个文件夹: ...

  2. sqlyog报错2058

    报错描述 SQLyog连接mysql8.0时,SQLyog Ultimate显示报错信息并附带乱码 "错误号码2058,Plugin caching--sha2_passward could ...

  3. 手把手教你看MySQL官方文档

    前言: 在学习和使用MySQL的过程中,难免会遇到各种问题.不知道当你遇到相关问题时会怎么做,我在工作或写文章的过程中,遇到不懂或需要求证的问题时通常会去查阅官方文档.慢慢的,阅读文档也有了一些经验, ...

  4. X264码率控制总结1——ABR,CQP,CRF

    1.  X264显式支持的一趟码率控制方法有:ABR, CQP, CRF. 缺省方法是CRF.这三种方式的优先级是ABR > CQP > CRF. if ( bitrate ) rc_me ...

  5. C++ primer plus读书笔记——第16章 string类和标准模板库

    第16章 string类和标准模板库 1. string容易被忽略的构造函数: string(size_type n, char c)长度为n,每个字母都为c string(const string ...

  6. Unreal: Dynamic load map from Pak file

    Unreal: Dynamic load map from Pak file 目标:在程序运行时加载自定义 Pak 文件,并打开指定关卡,显示其中的完整 map 内容 Unreal 的 Pak 文件内 ...

  7. 真正的原生JS数据双向绑定(实时同步)

    真正的原生JS数据双向绑定(实时同步) 接触过vue之后我感觉数据双向绑定实在是太好用了,然后就想着到底是什么原理,今天在简书上看到了一位老师的文章 js实现数据双向绑定 然后写出了我自己的代码 wi ...

  8. sosreport命令 然后diff 正常的操作系统例如centos

    nux学习笔记:有用的linux命令  发表于 2018-06-25 |  分类于 linux|  字数统计: 1,269 |  阅读时长 ≈ 6 写在前面 这着笔记,整理一些网上搜集到有用的linu ...

  9. LTP--linux稳定性测试 linux性能测试 ltp压力测试 内核更新 稳定性测试

    LTP--linux稳定性测试 linux性能测试 ltp压力测试 zhangzj1030关注14人评论33721人阅读2011-12-09 12:07:45   说明:在写这篇文章之前,本人也不曾了 ...

  10. python基础之模块初识

    Python的强大之处在于他有非常丰富和强大的标准库和第三方库,几乎你想实现的任何功能都有相应的Python库支持 一.time模块和datetime模块 和时间有关系的我们就要用到时间模块.在使用模 ...