D. Peculiar apple-tree

time limit per test : 1 second

memory limit per test : 256 megabytes

input : standard input

output : standard output

In Arcady's garden there grows a peculiar apple-tree that fruits one time per year. Its peculiarity can be explained in following way: there are n inflorescences, numbered from \(1\) to \(n\). Inflorescence number \(1\) is situated near base of tree and any other inflorescence with number \(i (i > 1)\) is situated at the top of branch, which bottom is \(p_i\)-th inflorescence and \(p_i< i\).

Once tree starts fruiting, there appears exactly one apple in each inflorescence. The same moment as apples appear, they start to roll down along branches to the very base of tree. Each second all apples, except ones in first inflorescence simultaneously roll down one branch closer to tree base, e.g. apple in \(a\)-th inflorescence gets to \(p_a\)-th inflorescence. Apples that end up in first inflorescence are gathered by Arcady in exactly the same moment. Second peculiarity of this tree is that once two apples are in same inflorescence they annihilate. This happens with each pair of apples, e.g. if there are \(5\) apples in same inflorescence in same time, only one will not be annihilated and if there are \(8\) apples, all apples will be annihilated. Thus, there can be no more than one apple in each inflorescence in each moment of time.

Help Arcady with counting number of apples he will be able to collect from first inflorescence during one harvest.

Input

First line of input contains single integer number \(n (2 ≤ n ≤ 100 000)\) — number of inflorescences.

Second line of input contains sequence of \(n - 1\) integer numbers \(p_2, p_3, ..., p_n (1 ≤ p_i < i)\), where \(p_i\) is number of inflorescence into which the apple from \(i\)-th inflorescence rolls down.

Output

Single line of output should contain one integer number: amount of apples that Arcady will be able to collect from first inflorescence during one harvest.

Examples

input

3

1 1

output

1

input

5

1 2 2 2

output

3

input

18

1 1 1 4 4 3 2 2 2 10 8 9 9 9 10 10 4

output

4

Note

In first example Arcady will be able to collect only one apple, initially situated in 1st inflorescence. In next second apples from 2nd and 3rd inflorescences will roll down and annihilate, and Arcady won't be able to collect them.

In the second example Arcady will be able to collect 3 apples. First one is one initially situated in first inflorescence. In a second apple from 2nd inflorescence will roll down to 1st (Arcady will collect it) and apples from 3rd, 4th, 5th inflorescences will roll down to 2nd. Two of them will annihilate and one not annihilated will roll down from 2-nd inflorescence to 1st one in the next second and Arcady will collect it.

题意

给你一棵树,有\(n\)个节点,每个节点有一个苹果,在苹果成熟后,苹果会落下来,如果有两个苹果落到了同一个节点,那么这两个苹果会消失,问最后会有多少个苹果落到根节点

思路

读题读了一年,发现是个傻逼题,嘤嘤嘤~

根据输入建好图,dfs求出每个节点的深度,然后算出各个深度有多少节点,如果是偶数个,那么最后落到根节点的苹果数一定是\(0\),反之为\(1\)

代码

#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+10;
const int mod=1e9+7;
const int maxm=1e3+10;
using namespace std;
int a[maxn];
vector<int>edge[maxn];
int hei[maxn];
int num[maxn];
// 处理每个点的深度
void dfs(int father,int son)
{
hei[son]=hei[father]+1;
for(auto v:edge[son])
{
if(v!=son)
dfs(son,v);
}
}
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in.txt", "r", stdin);
freopen("/home/wzy/out.txt", "w", stdout);
srand((unsigned int)time(NULL));
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin>>n;
for(int i=2;i<=n;i++)
{
cin>>a[i];
edge[a[i]].push_back(i);
}
dfs(0,1);
int ans=0;
map<int,int>mp;
for(int i=1;i<=n;i++)
mp[hei[i]]++;
for(auto it:mp)
ans+=(it.second&1);
cout<<ans<<endl;
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}

Codeforces 931D:Peculiar apple-tree的更多相关文章

  1. codeforces 812E Sagheer and Apple Tree(思维、nim博弈)

    codeforces 812E Sagheer and Apple Tree 题意 一棵带点权有根树,保证所有叶子节点到根的距离同奇偶. 每次可以选择一个点,把它的点权删除x,它的某个儿子的点权增加x ...

  2. CodeForces 812E Sagheer and Apple Tree 树上nim

    Sagheer and Apple Tree 题解: 先分析一下, 如果只看叶子层的话. 那么就相当于 经典的石子问题 nim 博弈了. 那我们看非叶子层. 看叶子层的父亲层. 我们可以发现, 如果从 ...

  3. codeforces 342E :Xenia and Tree

    Description Xenia the programmer has a tree consisting of n nodes. We will consider the tree nodes i ...

  4. Codeforces 812E Sagheer and Apple Tree

    大致题意: 给你一颗树,这个树有下列特征:每个节点上有若干个苹果,且从根节点到任意叶子节点的路径长度奇偶性相同. 甲和乙玩(闲)游(得)戏(慌). 游戏过程中,甲乙轮流将任意一个节点的若干个苹果移向它 ...

  5. Codeforces 812E Sagheer and Apple Tree ——(阶梯博弈)

    之前在bc上做过一道类似的阶梯博弈的题目,那题是移动到根,这题是移动到叶子.换汤不换药,只要和终态不同奇偶的那些位置做nim即可.因此这题给出了一个条件:所有叶子深度的奇偶性相同.同时需要注意的是,上 ...

  6. cf202-div 1-B - Apple Tree:搜索,数论,树的遍历

      http://codeforces.com/contest/348/problem/B   B. Apple Tree time limit per test 2 seconds memory l ...

  7. POJ 3321:Apple Tree 树状数组

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22131   Accepted: 6715 Descr ...

  8. Codeforces 348B - Apple Tree

    348B - Apple Tree 我们设最后答案为 x , 我们我们就能用x表示出所有节点下面的苹果个数, 然后用叶子节点求lcm, 取最大的可行解. #include<bits/stdc++ ...

  9. POJ 3321:Apple Tree(dfs序+树状数组)

    题目大意:对树进行m次操作,有两类操作,一种是改变一个点的权值(将0变为1,1变为0),另一种为查询以x为根节点的子树点权值之和,开始时所有点权值为1. 分析: 对树进行dfs,将树变为序列,记录每个 ...

随机推荐

  1. hbase调优

    @ 目录 一.phoenix调优 1.建立索引超时,查询超时 2.预分区 hbase shell预分区 phoenix预分区 3.在创建表的时候指定salting. 4.二级索引 建立行键与列值的映射 ...

  2. 学习java的第十一天

    一.今日收获 1.学习java完全学习手册2.9.3循环结构的内容并验证例题 2.观看哔哩哔哩上的教学视频 二.今日问题 1.基本没有 三.明日目标 1.继续完成2.9.3循环结构的例题 2.哔哩哔哩 ...

  3. MapReduce04 框架原理Shuffle

    目录 2 MapReduce工作流程 3 Shuffle机制(重点) 3.1 Shuffle机制 3.2 Partition分区 默认Partitioner分区 自定义Partitioner分区 自定 ...

  4. SQLITE_BTREE_H

    sqlite3.c, 237436行 = 全部源文件,找东西比多文件查找方便多了:-),字符串查找一点都不慢. 不要太害怕,SQLite说它的代码里有非常多是用来做数据完整性检查和测试的.但愿B树,虚 ...

  5. 利用python代码获取文件特定的内容,并保存为文档

    说明:有段时间需要读取上百个文件的单点能(sp),就写了下面的代码(计算化学狗努力转行中^-^) import os.path import re # 1 遍历指定目录,显示目录下的所有文件名 def ...

  6. Oracle中常用的系统表

    1.dba开头的表 dba_users 数据库用户信息 dba_segments 表段信息 dba_extents 数据区信息 dba_objects 数据库对象信息 dba_tablespaces ...

  7. springboot-使用AOP日志拦截实现

    一 前言 借助spring的AOP功能,我们可以将AOP应用至全局异常处理,全局请求拦截等,本篇文章的核心功能就是使用AOP实现日志记录,比如哪些用户进行了哪些操作,对于一个成功的项目这是必须记录的, ...

  8. java中super的几种用法,与this的区别

    1. 子类的构造函数如果要引用super的话,必须把super放在函数的首位. class Base { Base() { System.out.println("Base"); ...

  9. maven的lifecycle

    1.maven clean. 清理项目的target目录 2.maven compile 编译项目 3.maven test 编译项目后,再执行Junit测试方法 4.maven package 编译 ...

  10. Java SPI机制,你了解过吗?

    Life moves pretty fast,if you don't stop and look around once in a while,you will miss it 为什么需要SPI? ...