Causal Inference
A(A) --> Y(Y)
L(L) -->A(A) --> Y(Y)
L --> Y
这里对常用的causal effect的估计方法做一个总结, 需要注意的是, 在参数模型的情况下\(\theta L\) 表示\(\theta^TL\)当二者为向量的时候.
为了方便, 我们常常使用\(\sum\), 这并非要求该项必须是离散的, 除了\(A\)大部分可以等价于\(\int\).
默认情况下, (条件)可交换性(exchangeability), 一致性(consistency) 以及 正性(positivity) 都是满足的, 特别的情况为注明.
其中, time-varying的条件可交换性定义为:
\]
如果是静态的, \(g\)换成\(\bar{a}\).
Censoring 是数据缺失的情况, 对其的处理可以理解为对多个treatments的情况的处理.
Standardization
非参数情况
\]
\mathbb{E}[Y^a] = \mathbb{E}_{L} \mathbb{E}_{Y^a}[Y^a|L]
=\mathbb{E}_{L} \mathbb{E}_{Y}[Y|A=a, L].
\]
具体地, 为
\sum_l \mathbb{E}[Y|A=a, L=l] \mathrm{Pr}[L=l],
\]
所以该式必须满足正性, 即
\]
否则\(\mathbb{E}[Y|A=a, L=l]\)无定义.
Censoring
\]
参数模型
标准化处理的参数模型, 就是估计
\]
比如:
\]
接下来用(S, S+)的公式就可以了(一般是直接用S, 根据大数定律弄的).
Time-varying
静态
{}& \sum_{\bar{l}_K} \mathbb{E}[Y|\bar{A}_K=\bar{a}_K, \bar{L}_K=\bar{l}_K] \prod_{k=0}^K f(l_k|\bar{a}_{k-1}, \bar{l}_{k-1}) \\
=& \sum_{\bar{l}_K} \mathbb{E}[Y|\bar{A}_{K-1}=\bar{a}_{K-1}, \bar{L}_K=\bar{l}_K] \prod_{k=0}^K f(l_k|\bar{a}_{k-1}, \bar{l}_{k-1}) \\
=& \sum_{\bar{l}_K} \mathbb{E}[Y,\bar{A}_{K-1}=\bar{a}_{K-1}, \bar{L}_K=\bar{l}_K] \prod_{k=0}^{K-1} f(l_k|\bar{a}_{k-1}, \bar{l}_{k-1}) \cdot f(\bar{a}_{k-1}, \bar{l}_{k-1}) \\
=& \sum_{\bar{l}_K} \mathbb{E}[Y|\bar{A}_{K-1}=\bar{a}_{K-1}, \bar{L}_K=\bar{l}_{K-1}] \prod_{k=0}^{K-1} f(l_k|\bar{a}_{k-1}, \bar{l}_{k-1})\\
=& \cdots \\
=& \mathbb{E}[Y^{\bar{a}}].
\end{array}
\]
至于动态的, 书上给出了一个公式, 但是我感觉不是很对, 这里推导一下试试:
{}& \mathbb{E}[Y^g] \\
=& \mathbb{E}_{\bar{a}\sim g} \mathbb{E}_Y [Y^{\bar{a}}] \\
=&\sum_{\bar{a}\sim g} \sum_{\bar{l}} \mathbb{E}[Y^{\bar{a}}|\bar{A}=\bar{a}, L=\bar{l}] \cdot f(\bar{A}, \bar{L}), \\
\end{array}
\]
其中
\]
这里, \(f^{int}\)表示每一步\(g\)的根据前面历史选择\(A_k\)的概率.
IP weighting
无参数
\]
倘若\(A\)为连续变量, \(f\)为对应的条件密度函数, 则(非零的部分是零测集)
\]
当正性不成立的时候, 即存在\(l\), \(\mathrm{Pr}[L=l] > 0\), 但是\(f(A=0|L=l) = 0\), 此时
\mathbb{E}[\frac{I(A=a)Y}{f(A|L)}]
&= \mathbb{E}_{L \in Q(a)} \{\mathbb{E}[Y^a|L=l]\cdot \mathbb{E}_{A}[\frac{I(A=a)}{f(A|L)}|L]\} \\
&= \mathbb{E}_{L \in Q(a)} \{\mathbb{E}[Y^a|L=l]\} \\
&= \mathbb{E}[Y^a|L\in Q(a)]\mathrm{Pr}[L\in Q(a)]. \\
\end{array}
\]
Censoring
\]
参数模型
定义
\]
需要说明的是
\mathbb{E}[Y^a] = \frac{\mathbb{E}[I(A=a)W^AY]}{\mathbb{E}[I(A=a)W^A]}.
\]
注: 实际上分母为1.
特别的, 可以定义
\]
\mathbb{E}[Y^a] = \frac{\mathbb{E}[I(A=a)SW^AY]}{\mathbb{E}[I(A=a)SW^A]}.
\]
注: 此时分母为\(f(A)\). 在估计中, (IP+)更为稳定.
显然, 在参数模型中, 我们常常需要建模:
\]
并得到
\]
此时再进一步假设
\]
比如
\]
通过\(\widehat{W}\)或者\(\widehat{SW}\)得到\(\mathbb{E}[Y^a]\)的近似值:
\quad \mathrm{or} \quad
\frac{\sum_i I(A=a)SW_iY_i}{\sum_i I(A=a)SW_i}.
\]
通过最小二乘法来估计参数\(\theta_0, \theta_1\).
注: 一般情况下(\(A\)低维的情况), \(f(A)\)可以通过无参数估计估计, 否则也需要建模估计.
IP weighting 有一种特别好的思路, 主要到, 经过weighting之后, 相当于我们重新选择了\(A\), 此时\(A\)和\(L\)无关, 在这个伪造的人群中, 我们有
\]
注: 证明只需要用到\(A \amalg L\).
注: 在这种可建模的情况下, 正性并不重要, 而且似乎即使\(A\)是连续变量, 上述的估计方式也是奏效的, 但是说实话我无法理解.
censoring
如果由censoring的情况出现, 只需要考虑
SW^{AC} = SW^A \cdot SW^C, \\
\]
其中
SW^C = f(C|A) / f(C|A, L).
\]
条件下 V
如何用IP weighting 估计
\]
只需考虑
SW^A = f(A|V) / f(A, V, L\setminus V).
\]
分别利用(IP, IP+)即可.
注: 此时二者分母均不为1, 故不可用最普通的IP weighting的公式.
Time-varying
此时
SW^{\bar{A}} = \prod_{k=0}^K \frac{f(A_k|\bar{A}_{k-1})}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)}. \\
\]
剩下的就是利用类似(IP, IP+)的公式计算.
在这种情况下, 同样有条件下V, 但是, 特别的是, \(V\)必须是baseline variables, 即
\]
注: 没看到其用于动态策略的是说明.
G-estimation
非参数模型
非参数模型可以看成是参数模型的一种特例.
参数模型
这个方法主要是用于估计
-\mathbb{E}[Y^{a'}|L].
\]
假设
\]
则
-\mathbb{E}[Y^{a=0}|L] = \beta_1 a + \beta_3 aV.
\]
假设 rank preserving 成立, 则有
\Rightarrow Y^{a=0} = Y - \psi_0 a - \psi_1 a V,
\]
并定义\(H(\psi^{\dagger}):= Y^{a=0}\).
注意到, 条件可交换性
\]
意味着
= \mathrm{Pr}[A=1|L].
\]
假设我们用一个逻辑斯蒂回归对其进行建模:
\mathrm{Pr}[A=1|Y^{a=0}, L]
= \theta_0 + \theta_1 Y^{a=0} + \theta_2 Y^{a=0}V + \theta_3 L.
\]
则根据条件可交换性的性质, \(\theta_1, \theta_2\)都应该是0, 现在\(H(\psi^{\dagger})=Y^{a=0}\), 则
\mathrm{Pr}[A=1|H(\psi^{\dagger}), L]
= \theta_0 + \theta_1 H(\psi^{\dagger})+ \theta_2 H(\psi^{\dagger})V + \theta_3 L.
\]
给定\(\psi_0, \psi_1\), 我们可以估计出一组\(\theta_0, \cdots, \theta_3\), 什么样的\(\psi_0, \psi_1\)是好的, 就是让估计的参数\(\theta_1, \theta_2\)接近0.
所以 G-estimation 常用网格法来估计.
不过应对高维问题的时候就比较捉襟见肘了.
在特殊的情况下, 我们可以有显示的表达式.
Time-varying
类似.
\]
=Y^{\bar{A}_{k+1}, \underline{0}_{k}} + A_k \gamma_k (\bar{A}_{k-1}, \bar{l}_k ;\beta).
\]
\]
通过下式来估计:
\]
Propensity Scores
该方法仅能应用于二元情形, 即\(A \in \{0, 1\}\).
当\(L\)是一个高维向量的时候, 一般的无参数模型就派不上用场了, 尽管我们可以通过参数模型来建模, 但是带来的结果是估计结果的方差会比较大.
我们记\(\pi(L) = \mathrm{Pr}[A|L]\), 并证明:
\]
不妨假设\(\pi(L) =s \Leftrightarrow L \in \{l_i\}\), 则
\mathrm{Pr}[Y^a|\pi(L)=s]
&= \mathrm{Pr} [Y^a|L \in \{l_i\}] \\
&= \frac{\sum_i\mathrm{Pr}[Y^a,L=l_i]}{\sum_i \mathrm{Pr} [L=l_i]}\\
&= \frac{\sum_i\mathrm{Pr}[Y|A=a, L=l_i]\mathrm{Pr}[L=l_i]}{\sum_i \mathrm{Pr} [L=l_i]}\\
&= \frac{\mathrm{Pr}[A=a|L=l] \cdot \sum_i\mathrm{Pr}[Y|A=a, L=l_i]\mathrm{Pr}[L=l_i]}{\mathrm{Pr}[A=a|L=l]\sum_i \mathrm{Pr} [L=l_i]}\\
&= \frac{\sum_i\mathrm{Pr}[Y|A=a, L=l_i]\mathrm{Pr}[A=a, L=l_i]}{\sum_i \mathrm{Pr} [A=a, L=l_i]}\\
&= \frac{\sum_i\mathrm{Pr}[Y, A=a, L=l_i]}{\sum_i \mathrm{Pr} [A=a, L=l_i]}\\
&= \frac{\mathrm{Pr}[Y, A=a, \pi(L)=s]}{\mathrm{Pr} [A=a, \pi(L)]}\\
&= \mathrm{Pr} [Y|A=a, \pi(L)=s].
\end{array}
\]
注意: \(\pi(l_i) = \pi(l_j) = \pi(l) = s\).
可见, 上述推导仅在\(A\)为二元变量是成立, 否则
\mathrm{Pr}[A=a'|l] = \mathrm{Pr}[A=a'|l'].
\]
也就无法保证上面的推导证明对于所有的\(A=a\)成立.
此时, 我们可以扩展causal graph为:
故, 我们可以通过\(\pi(L)\)来block以保证条件可交换性.
剩下的工作就是利用前面的方法了.
Instrumental Variables
Z(Z)-->T(T) -->Y(Y)
U(U)-->T(T)
U(U)-->Y(Y)
instrumental variables 满足:
- Z 对 T 有 causal effect;
- Z 到 Y 的 causal effect 均通过 T, 即 T 是 Z 到 Y 所有 direct path 上的mediator;
- Z 和 Y 之间不存在backdoor path.
Binary Linear Setting
CAG图如上图所示.
\]
\mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0]
=&\mathbb{E}[\delta T + \alpha U|Z=1] - \mathbb{E}[\delta T +\alpha U|Z=0] \\
=&\delta \mathbb{E}[[T|Z=1]-[T|Z=0]] + \alpha \mathbb{E}[[U|Z=1]-[ U|Z=0]] \\
=&\delta \mathbb{E}[[T|Z=1]-[T|Z=0]]
\end{array}
\]
故
\]
注: 在此CAG图中, \(U \amalg Z\).
Continuous Linear Setting
依旧是如上的CAG图.
\mathrm{Cov}(Y, Z) =
& \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z] \\
=& \delta (\mathbb{E}[TZ] - \mathbb{E}[T]\mathbb{E}[Z]) + \alpha
(\mathbb{E}[UZ] - \mathbb{E}[U]\mathbb{E}[Z]) \\
=& \delta \mathrm{Cov}(T, Z) + \alpha \mathrm{Cov}(U,Z)\\
=& \delta \mathrm{Cov}(T, Z)
\end{array}
\]
故
\]
注: 依然用到了\(U \amalg Z\).
Nonparametric Identification
仅考虑单个的二元变量\(T \in \{0, 1\}\), 有如下几种情况:
- Compliers: \(T^{z=1}=1, T^{z=0}=0\).
- Always-takers: \(T^{z=1}=1, T^{z=0}=1\).
- Never-takers: \(T^{z=1}=0, T^{z=0}=0\).
- Defiers: \(T^{z=1}=0, T^{z=0}=1\).
当我们所考虑的群体中仅包括前三种类型的时候, 显然有:
\]
这是我们需要的单调性假设.
此时:
\frac{\mathbb{E}[Y|Z=1]-\mathbb{E}[Y|Z=0]}{\mathbb{E}[T|Z=1]-\mathbb{E}[T|Z=0]}.
\]
即, 在compliers (遵照医嘱的) 的人群中, 可以计算出其causal effect.
证明在[2]的p93.
Difference in Difference
difference in difference 同样是处理存在unobservable变量时的一种有效的处理方法.
我们可以把\(Y^a\)拆成俩个阶段:
- \(t=0\), 此时决定\(A\), 但是并没有落实\(A\);
- \(t=1\), 实行\(A\).
凭借下面的假设:
1.
\]
- \(A=1\), \(A=0\)两个群体若都不施加治疗, 则结果一致:
=\mathbb{E}[Y_1^0 - Y_0^0|A=0],
\]
- 治疗前的状态一致:
\]
注: 上面的第二条假设可能不容易满足.
则:
=(\mathbb{E}[Y_1|A=1]-\mathbb{E}[Y_0|A=1])
-(\mathbb{E}[Y_1|A=0]-\mathbb{E}[Y_0|A=0]).
\]
Doubly Robust Estimator
未完待续
Instrumental variable estimation
未完待续
Stratification
未完待续
Matching
未完待续
Causal Inference的更多相关文章
- Targeted Learning R Packages for Causal Inference and Machine Learning(转)
Targeted learning methods build machine-learning-based estimators of parameters defined as features ...
- 【统计】Causal Inference
[统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...
- 因果推理综述——《A Survey on Causal Inference》一文的总结和梳理
因果推理 本文档是对<A Survey on Causal Inference>一文的总结和梳理. 论文地址 简介 关联与因果 先有的鸡,还是先有的蛋?这里研究的是因果关系,因果关系与普通 ...
- Chapter 6 Graphical Representation of Causal Effects
目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...
- Chapter 1 A Definition of Causal Effect
目录 1.1 Individual casual effects 1.2 Average casual effects 1.5 Causation versus association Hern\(\ ...
- 近年Recsys论文
2015年~2017年SIGIR,SIGKDD,ICML三大会议的Recsys论文: [转载请注明出处:https://www.cnblogs.com/shenxiaolin/p/8321722.ht ...
- 因果推理的春天-实用HTE(Heterogeneous Treatment Effects)论文github收藏
一直以来机器学习希望解决的一个问题就是'what if',也就是决策指导: 如果我给用户发优惠券用户会留下来么? 如果患者服了这个药血压会降低么? 如果APP增加这个功能会增加用户的使用时长么? 如果 ...
- Graph machine learning 工具
OGB: Open Graph Benchmark https://ogb.stanford.edu/ https://github.com/snap-stanford/ogb OGB is a co ...
- graph处理工具
仅作为记录笔记,完善中...................... 1 PyGSP https://pygsp.readthedocs.io/en/stable/index.html ht ...
随机推荐
- 从分布式锁角度理解Java的synchronized关键字
分布式锁 分布式锁就以zookeeper为例,zookeeper是一个分布式系统的协调器,我们将其理解为一个文件系统,可以在zookeeper服务器中创建或删除文件夹或文件.设D为一个数据系统,不具备 ...
- 零基础学习java------29---------网络日志数据session案例,runtime(导出jar程序)
一. 网络日志数据session案例 部分数据 数据中的字段分别为: 访客ip地址,访客访问时间,访客请求的url及协议,网站响应码,网站返回数据量,访客的referral url,访客的客户端操作系 ...
- 【Python】【Basic】MacOS上搭建Python开发环境
1. Python3 1.1. 下载地址:https://www.python.org/downloads/mac-osx/ 1.1.1. PKG包安装: 没啥可说的,点点点,下一步而已,不用手动配置 ...
- Bash shell(六)-管道命令
就如同前面所说的, bash 命令执行的时候有输出的数据会出现! 那么如果这群数据必需要经过几道手续之后才能得到我们所想要的格式,应该如何来设定? 这就牵涉到管线命令的问题了 (pipe) ,管线命令 ...
- Spring支持5种类型的增强
Spring支持5种类型的增强:1.前置增强:org.springframework.aop.BeforeAdvice代表前置增强,因为Spring只支持方法级的增强,所以MethodBeforeAd ...
- JavaFile I/O流
Java 流(Stream).文件(File)和IO Java.io 包几乎包含了所有操作输入.输出需要的类.所有这些流类代表了输入源和输出目标. Java.io 包中的流支持很多种格式,比如:基本类 ...
- Mysql主从复制参数详解
目录 一.简介 二.例子 同步 修改 三.参数 一.简介 change master to配置和改变slave服务器用于连接master服务器的参数,以便slave服务器读取master服务器的bin ...
- [BUUCTF]PWN——babyfengshui_33c3_2016
babyfengshui_33c3_2016 附件 步骤: 例行检查,32位程序,开启了cannary和nx 本地运行一下看看大概的情况,熟悉的堆的菜单布局 32位ida载入,看main函数 add ...
- SROP例题
具体攻击原理可以参考安全客这篇文章:入口 刚学了一点,也是懵懵懂懂的,拿几道题来练练手. ciscn_2019_es_7 64位程序,只开启了NX保护. 相当于执行了read(0,buf,0x400) ...
- PMP变更流程
变更流程: