令$f_{i}$表示以$i$为结尾的最长上升子序列,显然可以快速预处理

令$L=\max_{i=1}^{n}f_{i}$,当$L$为偶数,考虑如下构造——

将所有$f_{i}\le \frac{L}{2}$的$a_{i}$选入第1个序列,其余位置选入第2个序列

此时,来证明两个序列的最长上升子序列都是$\frac{L}{2}$

考虑这个长为$L$的最长上升子序列,其前$\frac{L}{2}$个元素必然都在第1个序列中,后$\frac{L}{2}$个元素必然都在第2个序列中,即两者最长上升子序列长度都大于等于$\frac{L}{2}$

另一方面,第1个序列中以$i$为结尾的最长上升序列小于等于$\frac{L}{2}$,第2个序列中以$i$为起点的最长上升序列小于等于$\frac{L}{2}$(由于$f_{i}>\frac{L}{2}$,且两者之和小于等于$L$,即有此结论),也都小于等于$\frac{L}{2}$

(其中$i$为各自序列中任意元素)

当$L$为奇数,假设$L=2k+1$,那么对于其中一个长为$L$的上升子序列,要存在一个元素$x$,其不在此序列中,且存在一个长为$k+1$的上升子序列包含其

关于这件事情的必要性是显然的,同时其也是充分的,考虑如下构造——

任选一个长为$L$的上升子序列,根据此性质,选择$x$并假设这个$k+1$的上升子序列为$p_{1},p_{2},...,p_{k+1}$

将所有满足$\forall 1\le j\le k+1,f_{i}\ne f_{p_{j}}$或$f_{i}=f_{x}$且$i\ne x$的$a_{i}$选入第1个序列,其余位置选入第2个序列

在第1个序列中,考虑这个长为$L$的上升子序列,设其中第$i$个位置为$x$,即有$f_{x}=i$,恰好包含$[1,L]$中所有值,其中恰有$k$个值不能选($f_{i}=f_{x}$是可以选的),构成一个长为$k+1$的上升子序列

在第2个序列中,$p_{i}$都被选入第2个序列,也构成一个长为$k+1$个上升子序列

另一方面,对于一个长为$k$的上升子序列,每一个位置的$f_{x}$必然各不相同,而注意到两个序列中都至多含有$k+1$个不同的$f$,即不存在长为$k+2$的上升子序列

关于判定,求出以每一个元素为起点和终点的最长上升子序列,即可求出强制包含某个元素的最长上升子序列,判定其是否大于等于$k+1$即可

由此,即解决此问题,时间复杂度为$o(n\log n)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 int t,n,ans,a[N],vis[N],f[N],g[N],mx[N<<2];
8 void build(int k,int l,int r){
9 mx[k]=0;
10 if (l==r)return;
11 build(L,l,mid);
12 build(R,mid+1,r);
13 }
14 void update(int k,int l,int r,int x,int y){
15 if (l==r){
16 mx[k]=y;
17 return;
18 }
19 if (x<=mid)update(L,l,mid,x,y);
20 else update(R,mid+1,r,x,y);
21 mx[k]=max(mx[L],mx[R]);
22 }
23 int query(int k,int l,int r,int x,int y){
24 if ((l>y)||(x>r))return 0;
25 if ((x<=l)&&(r<=y))return mx[k];
26 return max(query(L,l,mid,x,y),query(R,mid+1,r,x,y));
27 }
28 int main(){
29 scanf("%d",&t);
30 while (t--){
31 scanf("%d",&n);
32 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
33 ans=0;
34 build(1,1,n);
35 for(int i=1;i<=n;i++){
36 f[i]=query(1,1,n,1,a[i]-1)+1;
37 update(1,1,n,a[i],f[i]);
38 ans=max(ans,f[i]);
39 }
40 if (ans%2==0)printf("YES\n");
41 else{
42 build(1,1,n);
43 for(int i=n;i;i--){
44 g[i]=query(1,1,n,a[i]+1,n)+1;
45 update(1,1,n,a[i],g[i]);
46 }
47 bool flag=0;
48 for(int i=n,j=ans;i;i--)
49 if (f[i]==j)j--;
50 else{
51 if (f[i]+g[i]-1>=ans/2+1){
52 printf("YES\n");
53 flag=1;
54 break;
55 }
56 }
57 if (!flag)printf("NO\n");
58 }
59 }
60 }

[atAGC052D]Equal LIS的更多相关文章

  1. Codeforces Round #371 (Div. 2)E. Sonya and Problem Wihtout a Legend[DP 离散化 LIS相关]

    E. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 megaby ...

  2. 【HDU 4352】 XHXJ's LIS (数位DP+状态压缩+LIS)

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. 1053. Path of Equal Weight (30)

    Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of ...

  4. XHXJ's LIS(数位DP)

    XHXJ's LIS http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others)     ...

  5. HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  6. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  7. POJ 1836-Alignment(DP/LIS变形)

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13465   Accepted: 4336 Descri ...

  8. poj 1836 LIS变形

    题目链接http://poj.org/problem?id=1836 Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submiss ...

  9. CodeForces - 650D:Zip-line (LIS & DP)

    Vasya has decided to build a zip-line on trees of a nearby forest. He wants the line to be as long a ...

随机推荐

  1. Idea生成JavaDoc文档

    什么是JavaDoc javadoc是Sun公司提供的一个技术 它从程序源代码中抽取类.方法.成员等注释形成一个和源代码配套的API帮助文档 实现方式 命令行方式 javadoc -encoding ...

  2. 极简SpringBoot指南-Chapter00-学习SpringBoot前的基本知识

    仓库地址 w4ngzhen/springboot-simple-guide: This is a project that guides SpringBoot users to get started ...

  3. 基于nginx实现私有yum仓库

    基于本地光盘的源 server端IP:10.0.0.79 nginx使用默认路径.端口 yum install nginx -y #更改以root运行 sed -i '/^user/s/nginx/r ...

  4. 后台管理系统使用vue-element-admin搭建

    近期在搞一个会议健康申报系统时,要搞一个后台,用到了vue-element-admin模板,使用的是PanJianChen(源码地址:https://github.com/PanJiaChen/vue ...

  5. SpringMVC 获得请求数据

    获得请求参数 客户端请求参数的格式是:name=value&name=value- - 服务器端要获得请求的参数,有时还需要进行数据的封装,SpringMVC可以接收如下类型的参数: 基本类型 ...

  6. 第五课第四周实验一:Embedding_plus_Positional_encoding 嵌入向量加入位置编码

    目录 变压器预处理 包 1 - 位置编码 1.1 - 位置编码可视化 1.2 - 比较位置编码 1.2.1 - 相关性 1.2.2 - 欧几里得距离 2 - 语义嵌入 2.1 - 加载预训练嵌入 2. ...

  7. 【二食堂】Alpha - Scrum Meeting 4

    Scrum Meeting 4 例会时间:4.14 12:30 - 12:50 进度情况 组员 昨日进度 今日任务 李健 1. 主页面的搭建工作issue 1. 完成主页搭建**issue2. 与后端 ...

  8. Ruby on Rails 单元测试

    Ruby on Rails 单元测试 为什么要写测试文件? 软件开发中,一个重要的环节就是编写测试文件,对代码进行单元测试,确保程序各部分功能执行正确.但是,这一环节很容易被我们轻视,认为进行单元测试 ...

  9. 期望dp好题选做

    前言: 最近连考两场期望dp的题目,sir说十分板子的题目我竟然一点也不会,而且讲过以后也觉得很不可改.于是开个坑. 1.晚测10 T2 大佬(kat) 明明有\(O(mlog)\)的写法,但是\(m ...

  10. Python SyntaxError: Missing parentheses in call to 'print'

    下面的代码 print "hello world" 会出现下面的错误 SyntaxError: Missing parentheses in call to 'print' 因为写 ...