计算机起源于美国,上个世纪,他们对英语字符与二进制位之间的关系做了统一规定,并制定了一套字符编码规则,这套编码规则被称为ASCII编码

ASCII 编码一共定义了128个字符的编码规则,用七位二进制表示 ( 0x00 - 0x7F ), 这些字符组成的集合就叫做 ASCII 字符集

随着计算机的普及,在不同的地区和国家又出现了很多字符编码,比如: 大陆的 GB2312、港台的 BIG5, 日本的 Shift JIS等等

由于字符编码不同,计算机在不同国家之间的交流变得很困难,经常会出现乱码的问题,比如:对于同一个二进制数据,不同的编码会解析出不同的字符

当互联网迅猛发展,地域限制打破之后,人们迫切的希望有一种统一的规则, 对所有国家和地区的字符进行编码,于是 Unicode 就出现了

Unicode 简介

Unicode 是国际标准字符集,它将世界各种语言的每个字符定义一个唯一的编码,以满足跨语言、跨平台的文本信息转换

Unicode 字符集的编码范围是 0x0000 - 0x10FFFF , 可以容纳一百多万个字符, 每个字符都有一个独一无二的编码,也即每个字符都有一个二进制数值和它对应,这里的二进制数值也叫 码点 , 比如:汉字 "中" 的 码点是 0x4E2D, 大写字母 A 的码点是 0x41, 具体字符对应的 Unicode 编码可以查询 Unicode字符编码表

字符集和字符编码

字符集是很多个字符的集合,例如 GB2312 是简体中文的字符集,它收录了六千多个常用的简体汉字及一些符号,数字,拼音等字符

字符编码是 字符集的一种实现方式,把字符集中的字符映射为特定的字节或字节序列,它是一种规则

比如:Unicode 只是字符集,UTF-8、UTF-16、UTF-32 才是真正的字符编码规则

Unicode 字符存储

Unicode 是一个符号集, 它只规定了每个符号的二进制值,但是符号具体如何存储它并没有规定

前面提到, Unicode 字符集的编码范围是 0x0000 - 0x10FFFF,因此需要 1 到 3 个字节来表示

那么,对于三个字节的 Unicode字符,计算机怎么知道它表示的是一个字符而不是三个字符呢 ?

如果所有字符都用三个字节表示,那么对于那些一个字节就能表示的字符来说,有两个字节是无意义的,对于存储来说,这是极大的浪费,假如 , 一个普通的文本, 大部分字符都只需一个字节就能表示,现在如果需要三个字节才能表示,文本的大小会大出三倍左右

因此,Unicode 出现了多种存储方式,常见的有 UTF-8、UTF-16、UTF-32,它们分别用不同的二进制格式来表示 Unicode 字符

UTF-8、UTF-16、UTF-32 中的 "UTF" 是 "Unicode Transformation Format" 的缩写,意思是"Unicode 转换格式",后面的数

字表明至少使用多少个比特位来存储字符, 比如:UTF-8 最少需要8个比特位也就是一个字节来存储,对应的, UTF-16 和 UTF-32 分别需要最少 2 个字节 和 4 个字节来存储

UTF-8 编码

UTF-8: 是一种变长字符编码,被定义为将码点编码为 1 至 4 个字节,具体取决于码点数值中有效二进制位的数量

UTF-8 的编码规则:

  1. 对于单字节的符号,字节的第一位设为 0,后面 7 位为这个符号的 Unicode 码。因此对于英语字母,UTF-8 编码和 ASCII 码是相同的, 所以 UTF-8 能兼容 ASCII 编码,这也是互联网普遍采用 UTF-8 的原因之一

  2. 对于 n 字节的符号( n > 1),第一个字节的前 n 位都设为 1,第 n + 1 位设为 0,后面字节的前两位一律设为 10 。剩下的没有提及的二进制位,全部为这个符号的 Unicode 码

下表是Unicode编码对应UTF-8需要的字节数量以及编码格式

Unicode编码范围(16进制) UTF-8编码方式(二进制)
000000 - 00007F 0xxxxxxx ASCII码
000080 - 0007FF 110xxxxx 10xxxxxx
000800 - 00FFFF 1110xxxx 10xxxxxx 10xxxxxx
01 0000 - 10 FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

表格中第一列是Unicode编码的范围,第二列是对应UTF-8编码方式,其中红色的二进制 "1""0" 是固定的前缀, 字母 x 表示可用编码的二进制位

根据上面表格,要解析 UTF-8 编码就很简单了,如果一个字节第一位是 0 ,则这个字节就是一个单独的字符,如果第一位是 1 ,则连续有多少个 1 ,就表示当前字符占用多少个字节

下面以 "中" 字 为例来说明 UTF-8 的编码,具体的步骤如下图, 为了便于说明,图中左边加了 1,2,3,4 的步骤编号

首先查询 "中" 字的 Unicode 码 0x4E2D, 转成二进制, 总共有 16 个二进制位, 具体如上图 步骤1 所示

通过前面的 Unicode 编码和 UTF-8 编码的表格知道,Unicode 码 0x4E2D 对应 000800 - 00FFFF 的范围,所以, "中" 字的 UTF-8 编码 需要 3 个字节,即格式是 1110xxxx 10xxxxxx 10xxxxxx

然后从 "中" 字的最后一个二进制位开始,按照从后向前的顺序依次填入格式中的 x 字符,多出的二进制补为 0, 具体如上图 步骤2、步骤3 所示

于是,就得到了 "中" 的 UTF-8 编码是 11100100 10111000 10101101, 转换成十六进制就是 0xE4B8AD, 具体如上图 步骤4 所示

UTF-16 编码

UTF-16 也是一种变长字符编码, 这种编码方式比较特殊, 它将字符编码成 2 字节 或者 4 字节

具体的编码规则如下:

  1. 对于 Unicode 码小于 0x10000 的字符, 使用 2 个字节存储,并且是直接存储 Unicode 码,不用进行编码转换

  2. 对于 Unicode 码在 0x100000x10FFFF 之间的字符,使用 4 个字节存储,这 4 个字节分成前后两部分,每个部分各两个字节,其中,前面两个字节的前 6 位二进制固定为 110110,后面两个字节的前 6 位二进制固定为 110111, 前后部分各剩余 10 位二进制表示符号的 Unicode 码 减去 0x10000 的结果

  3. 大于 0x10FFFF 的 Unicode 码无法用 UTF-16 编码

下表是Unicode编码对应UTF-16编码格式

Unicode编码范围(16进制) 具体Unicode码(二进制) UTF-16编码方式(二进制) 字节
0000 0000 - 0000 FFFF xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 2
0001 0000 - 0010 FFFF yy yyyyyyyy xx xxxxxxxx 110110yy yyyyyyyy 110111xx xxxxxxxx 4

表格中第一列是Unicode编码的范围,第二列是 具体Unicode码的二进制 ( 第二行的第二列表示的是 Unicode 码 减去 0x10000 后的二进制 ) , 第三列是对应UTF-16编码方式,其中红色的二进制 "1""0" 是固定的前缀, 字母 xy 表示可用编码的二进制位, 第四列表示 编码占用的字节数

前面提到过,"中" 字的 Unicode 码是 4E2D, 它小于 0x10000,根据表格可知,它的 UTF-16 编码占两个字节,并且和 Unicode 码相同,所以 "中" 字的 UTF-16 编码为 4E2D

我从 Unicode字符表网站 找了一个老的南阿拉伯字母, 它的 Unicode 码是: 0x10A6F , 可以访问 https://unicode-table.com/cn/10A6F/ 查看字符的说明, Unicode 码对应的字符如下图所示

下面以这个 老的南阿拉伯字母的 Unicode 码 0x10A6F 为例来说明 UTF-16 4 字节的编码,具体步骤如下,为了便于说明,图中左边加了 1,2,3,4 、5 的步骤编号

首先把 Unicode 码 0x10A6F 转成二进制, 对应上图的 步骤 1

然后把 Unicode 码 0x10A6F 减去 0x10000, 结果为 0xA6F 并把这个值转成二进制 00 00000010 10 01101111,对应上图的 步骤 2

然后 从二进制 00 00000010 10 01101111 的最后一个二进制为开始,按照从后向前的顺序依次填入格式中的 xy 字符,多出的二进制补为 0, 对应上图的 步骤 3、 步骤 4

于是,就计算出了 Unicode 码 0x10A6F 的 UTF-16 编码是 11011000 00000010 11011110 01101111 , 转换成十六进制就是 0xD802DE6F, 对应上图的 步骤 5

UTF-32 编码

UTF-32 是固定长度的编码,始终占用 4 个字节,足以容纳所有的 Unicode 字符,所以直接存储 Unicode 码即可,不需要任何编码转换。虽然浪费了空间,但提高了效率。

UTF-8、UTF-16、UTF-32 之间如何转换

前面介绍过,UTF-8、UTF-16、UTF-32 是 Unicode 码表示成不同的二进制格式的编码规则,同样,通过这三种编码的二进制表示,也能获得对应的 Unicode 码,有了字符的 Unicode 码,按照上面介绍的 UTF-8、UTF-16、UTF-32 的编码方法 就能转换成任一种编码了

UTF 字节序

最小编码单元是多字节才会有字节序的问题存在,UTF-8 最小编码单元是一字节,所以 它是没有字节序的问题,UTF-16 最小编码单元是 2 个字节,在解析一个 UTF-16 字符之前,需要知道每个编码单元的字节序

比如:前面提到过,"中" 字的 Unicode 码是 4E2D, "ⵎ" 字符的 Unicode 码是 2D4E, 当我们收到一个 UTF-16 字节流 4E2D 时,计算机如何识别它表示的是字符 "中" 还是 字符 "ⵎ" 呢 ?

所以,对于多字节的编码单元,需要有一个标记显式的告诉计算机,按照什么样的顺序解析字符,也就是字节序,字节序分为 大端字节序 和 小端字节序

小端字节序简写为 LE( Little-Endian ), 表示 低位字节在前,高位字节在后, 高位字节保存在内存的高地址端,而低位字节保存在内存的低地址端

大端字节序简写为 BE( Big-Endian ), 表示 高位字节在前,低位字节在后,高位字节保存在内存的低地址端,低位字节保存在在内存的高地址端

下面以 0x4E2D 为例来说明大端和小端,具体参见下图:

数据是从高位字节到低位字节显示的,这也更符合人们阅读数据的习惯,而内存地址是从低地址向高地址增加

所以,字符0x4E2D 数据的高位字节是 4E,低位字节是 2D

按照大端字节序的高位字节保存内存低地址端的规则,4E 保存到低内存地址 0x10001 上,2D 则保存到高内存地址 0x10002

对于小端字节序,则正好相反,数据的高位字节保存到内存的高地址端,低位字节保存到内存低地址端的,所以 4E 保存到高内存地址 0x10002 上,2D 则保存到低内存地址 0x10001

BOM

BOM 是 byte-order mark 的缩写,是 "字节序标记" 的意思, 它常被用来当做标识文件是以 UTF-8、UTF-16 或 UTF-32 编码的标记

在 Unicode 编码中有一个叫做 "零宽度非换行空格" 的字符 ( ZERO WIDTH NO-BREAK SPACE ), 用字符 FEFF 来表示

对于 UTF-16 ,如果接收到以 FEFF 开头的字节流, 就表明是大端字节序,如果接收到 FFFE, 就表明字节流 是小端字节序

UTF-8 没有字节序问题,上述字符只是用来标识它是 UTF-8 文件,而不是用来说明字节顺序的。"零宽度非换行空格" 字符 的 UTF-8 编码是 EF BB BF, 所以如果接收到以 EF BB BF 开头的字节流,就知道这是UTF-8 文件

下面的表格列出了不同 UTF 格式的固定文件头

UTF编码 固定文件头
UTF-8 EF BB BF
UTF-16LE FF FE
UTF-16BE FE FF
UTF-32LE FF FE 00 00
UTF-32BE 00 00 FE FF

根据上面的 固定文件头,下面列出了 "中" 字在文件中的存储 ( 包含文件头 )

编码 固定文件头
Unicode 编码 0X004E2D
UTF-8 EF BB BF E4 B8 AD
UTF-16BE FE FF 4E 2D
UTF-16LE FF FE 2D 4E
UTF-32BE 00 00 FE FF 00 00 4E 2D
UTF-32LE FF FE 00 00 2D 4E 00 00

常见的字符编码的问题

  • Redis 中文key的显示

有时候我们需要向redis中写入含有中文的数据,然后在查看数据,但是会看到一些其他的字符,而不是我们写入的中文

上图中,我们向redis 写入了一个 "中" 字,通过 get 命令查看的时候无法显示我们写入的 "中" 字

这时候加一个 --raw 参数,重新启动 redis-cli 即可,也即 执行 redis-cli --raw 命令启动redis客户端,具体的如下图所示

  • MySQL 中的 utf8 和 utf8mb4

MySQL 中的 "utf8" 实际上不是真正的 UTF-8, "utf8" 只支持每个字符最多 3 个字节, 对于超过 3 个字节的字符就会出错, 而真正的 UTF-8 至少要支持 4 个字节

MySQL 中的 "utf8mb4" 才是真正的 UTF-8

下面以 test 表为例来说明, 表结构如下:

mysql> show create table test\G
*************************** 1. row ***************************
Table: test
Create Table: CREATE TABLE `test` (
`name` char(32) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

test 表分别插入 "中" 字 和 Unicode 码为 0x10A6F 的字符,这个字符需要从 https://unicode-table.com/cn/10A6F/ 直接复制到 MySQL 控制台上,手工输入会无效,具体的执行结果如下图:

从上图可以看出,插入 "中" 字 成功,插入 0x10A6F 字符失败,错误提示无效的字符串,\xF0\X90\XA9\xAF 正是 0x10A6F 字符的 UTF-8 编码,占用 4 个字节, 因为 MySQL 的 utf8 编码最多只支持 3 个字节,所以插入会失败

test 表的字符集改成 utf8mb4 , 排序规则 改成 utf8bm4_unicode_ci, 具体如下图所示:

字符集和排序方式修改之后,再次插入 0x10A6F 字符, 结果是成功的,具体执行结果如下图所示

上图中,set names utf8mb4 是为了测试方便,临时修改当前会话的字符集,以便保持和 服务器一致,实际解决这个问题需要修改 my.cnf 配置中 服务器和客户端的字符集

小结

本文从字符编码的历史介绍了 Unicode 出现的原因,接着介绍了 Unicode 字符集中 三种不同的编码方式: UTF-8、UTF-16、UTF-32 以及它们的的编码方法,紧接着介绍了 字节序、BOM ,最后讲到了字符集在 MySQL 和 Redis 应用中常见的问题以及解决方案 ,更多关于 Unicode 的介绍请参考 Unicode 的 RFC 文档

Unicode、UTF-8、UTF-16 终于懂了的更多相关文章

  1. 终于懂了:Delphi消息的Result域出现的原因——要代替回调函数的返回值!(MakeObjectInstance不会帮助处理(接收)消息回调函数的返回值)

    MakeObjectInstance应该不会帮助处理(接收)消息回调函数的返回值,可是有时候又确实需要这个返回值,这可怎么办呢?我是看到这段文字的时候,想到这个问题的: 当WM_PAINT不是由Inv ...

  2. Unicode 与 Unicode Transformation Format(UTF,UTF-8 / UTF-16 / UTF-32)

    ASCII(American Standard Code for Information Interchange):早期它使用7 bits来表示一个字符,总共表示27 = 128个字符:后来扩展到8 ...

  3. Unicode 字符和UTF编码的理解

    Unicode 编码的由来 我们都知道,计算机的内部全部是由二进制数字0, 1 组成的, 那么计算机就没有办法保存我们的文字, 这怎么行呢? 于是美国人就想了一个办法(计算机是由美国人发明的),也把文 ...

  4. Ansi、GB2312、GBK、Unicode(utf8、16、32)

    关于ansi,一般默认为本地编码方式,中文应该是gb编码 他们之间的关系在这边文章里描写的很清楚:http://blog.csdn.net/ldanduo/article/details/820353 ...

  5. 终于懂了:Delphi消息的Result完全是生造出来的,不是Windows消息自带的(Delphi对Windows编程体系的改造越大,学习收获就越大)——消息是否继续传递就看这个Result

    Windows中,消息使用统一的结构体(MSG)来存放信息,其中message表明消息的具体的类型, 而wParam,lParam是其最灵活的两个变量,为不同的消息类型时,存放数据的含义也不一样. t ...

  6. 终于懂了:Delphi重定义消息结构随心所欲,只需要前4个字节是消息编号就行了(有了这个,就有了主动)

    Delphi重定义消息结构随心所欲,只需要前4个字节是消息编号就行了,跟Windows消息虽然尽量保持一致,但其实相互没有特别大的关系.有了这个,就有了主动,带不带句柄完全看需要. 比如这个结构就带句 ...

  7. 终于懂浏览器里面的cookies和session了

    在PHP开发中对比起Cookie,session 是存储在服务器端的会话,相对安全,并且不像 Cookie 那样有存储长度限制: (Php.Asp.Jsp)---: cookie(客户端)界面没有刷新 ...

  8. 一个简单的小例子让你明白c#中的委托-终于懂了!

    模拟主持人发布一个问题,由多个嘉宾来回答这个问题. 分析:从需求中抽出Host (主持人) 类和Guests (嘉宾) 类. 作为问题的发布者,Host不知道问题如何解答.因此它只能发布这个事件,将事 ...

  9. 终于懂了:Delphi的函数名不是地址,取地址必须遵守Object Pascal的语法(Delphi和C的类比:指针、字符串、函数指针、内存分配等)good

    这点是与C语言不一样的地方,以前我一直都没有明白这一点,所以总是不明白:函数地址再取地址算怎么回事? ------------------------------------------------- ...

随机推荐

  1. P5212-SubString【LCT,SAM】

    正题 题目链接:https://www.luogu.com.cn/problem/P5212 题目大意 开始一个字符串\(S\),有\(n\)次操作 在\(S\)末尾加入一个字符串 询问一个串在\(S ...

  2. pkusc2021游记

    @ 目录 前言 Day 0 Day 1 Day 2 Day 3 前言 到时候APIO的大概也会写在这篇里吧. Day 0 车,公交,飞机,公交,车 坐了半天的交通终于到了,整个人都坐的晕乎乎的,然后看 ...

  3. 深度学习--GAN学习笔记

    生成模型 WGAN Blog GAN 推荐学习网站 生成模型 什么是生成模型? GMM: 用来做聚类,(非监督学习) NB(朴素贝叶斯):(监督学习,可以用来做垃圾邮件分类) Logistics 回归 ...

  4. Ubuntu系统的开机全流程介绍及grub美化

    目录 前言 Ubuntu开机经历的步骤 BIOS Boot Loader Kernel 配置 Grub 的个性化主题 /usr/share/grub/default/grub /etc/default ...

  5. 运用shapefile.js解析Shp文件

    <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="utf-8& ...

  6. 项目实战 Prometheus环境搭建

    项目摘要: 本文是搭建一套prometheus环境的教程. 前期准备:准备三台虚拟机,本文以centos7为例. 项目具体实施:分别进入每台虚拟机设置hostname:# hostnamectl se ...

  7. noip模拟78

    考试过程:先读题,然后觉得开题顺序1 4 2 3. 首先是T1,要是不考虑重复这题很简单,但是考虑重复就比较复杂了,我打完,对拍完差不多用了两个小时,然后就是忘了算内存,结果内存爆了,\(100pts ...

  8. PublishFolderCleaner 让你的 dotnet 应用发布文件夹更加整洁

    大家都知道,在 dotnet 发布时,将会在输出的 publish 文件夹包含所需的依赖.在 .NET Core 开始,引入了 AppHost 的概念,即使是单个程序集,也需要独立的 Exe 可执行文 ...

  9. .jar文件没有Java(TM) Platform SE binary打开方式解决办法

    下面是我个人在打开.jar文件时候的一些小问题: 明明已经配置好了环境变量.jar文件却没有 Java(TM) Platform SE binary 的打开方式, 网上查了资料点明是环境变量的问题,后 ...

  10. 分布式全局ID与分布式事务

    1. 概述 老话说的好:人不可貌相,海水不可斗量.以貌取人是非常不好的,我们要平等的对待每一个人. 言归正传,今天我们来聊一下分布式全局 ID 与分布式事务. 2. 分布式全局ID 2.1 分布式数据 ...