在最近发布的 .NET 6 中,包含了一个新的数据结构,优先队列 PriorityQueue, 实际上这个数据结构在隔壁 Java中已经存在了很多年了, 那优先队列是怎么实现的呢? 让我们来一探究竟吧。

时间复杂度

因为接下来会分析时间复杂度, 这里先贴一张几种时间复杂度的对比图,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n2 )。

什么是优先队列

首先,队列大家都知道, 是一个非常基础的数据结构, 它的特点是先进先出(FIFO)。

而优先队列却不一定是先进先出,因为每个元素都有一个权重值, 代表着元素出队的优先级。

队列可以用数组和链表实现, 简单、高效, 这样入队和出队的时间复杂度都是 O(1)。

优先队列能不能使用上面的方法呢? 也可以, 但是每次新元素入队后, 需要和队列内的元素进行遍历和大小对比, 然后插入到合适的位置, 让整个序列保持从大到小或者从小到大,这样入队的时间复杂度变成 O(n), 而出队复杂度不变, 还是 O(1)。O(n) 代表入队的时间是线性增长的, 效率较低, 有没有更高效的方法呢?

堆 Heap

堆这种数据结构的应用场景非常多,最经典的莫过于堆排序了, 堆排序是一种原地的、时间复杂度为 O(nlog n) 的排序算法,另外,堆也很适合用来做优先队列。

堆和树的结构其实是相似的, 堆有二叉堆, d-ary 堆, 2-3 堆, 斐波那契堆等等, 堆有一个特点就是每个父节点都大于等于它的儿子节点, 这种是大顶堆, 或者每个父节点都小于等于它的儿子节点, 这种是小顶堆,另外堆的儿子不分左右, 其中 java 中的 PriorityQueue 就是用二叉小顶堆实现的。

上面就是二叉堆, 而 .NET 6 中的 PriorityQueue 是由 d-ary 堆实现的, 而 d 表示父节点有几个儿子节点, .NET 6 中指定这个值为4,并且是小顶堆,也就是 “四叉小顶堆"。

四叉堆比二叉堆更快,可以参考下面链接的论文

A Back-to-Basics Empirical Study of Priority Queues

那么如何在代码中实现呢?其实可以用数组存储堆, 我们可以通过”广度优先遍历“ 的方法, 把堆的节点映射到一个数组中,如下

另外,堆和数组之间还有下面的关系

  1. 堆的顶点就是数组的第一个元素,也是最小的元素。

  2. 通过子节点的下标,就可以通过公式计算出父节点的下标, 公式为

    P = (C - 1) / 4

    其中 P = 父节点的下标, C = 子节点的下标

现在优先队列的数据结构确定了, 接下来看元素的入队和出队。

入队 Enqueue

使用堆来实现优先队列,入队操作2步完成, 非常简单!

  1. 添加新节点到末尾

  2. 通过上面的公式 P = (C - 1) / 4, 新的子节点和父节点进行大小对比,如果子节点比较小,那么就和父节点交换,重复这个过程,直到子节点大于或等于父节点,或者子节点变成堆顶,堆化完成, 这个交换过程是从下往上的, 入队的时间复杂度是 O(log n)。

出队 Dequeue

出队,就是每次取队列内最小的元素,基小顶堆结构,其实只需要取堆顶的元素即可,对应数组的第1个元素 array[0]。

你会发现,当取出堆顶元素以后,小顶堆的顶已经空了, 为了保持堆的结构,我们需要重新堆化。

和上面的入队 Enqueue 的逻辑有异曲同工之妙, 我们可以取堆的最后一个元素,把它放到堆顶, 然后父节点去和4个儿子节点比大小,如果比儿子节点大,就交换, 重复这个过程,直到父节点比4个儿子节点都大, 或者到达堆的最后一层,堆化完成,这个交换过程是从上往下的,出队的时间复杂度同样是 O(log n)。

另外,如果多个儿子节点都比父节点小,那父节点和最小的子节点交换。

扩容和收缩机制

优先队列是用数组实现的四叉小顶堆, 那么就存在数组的扩容和收缩的情况

扩容:最小为4,数组满的时候会扩大为当前容量的2倍。

收缩:数组不会自动收缩,不过可以手动调用 TrimExcess() 方法, 当空余的空间大于10% 的时候, 数组的长度会收缩到当前队列元素的数量。

总结

本文主要介绍了 .NET 6 新增的数据结构优先队列,感兴趣的也可以看一下 PriorityQueue 的源码, 其实就是基于堆这种结构实现的,也展示了入队和出队的堆结构的变化过程,另外需要注意的是,堆这种结构不是稳定的,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以以相同优先级入队的元素并不能保证以相同的顺序出队。

参考

System/Collections/Generic/PriorityQueue.cs

https://github.com/dotnet/runtime/issues/14032

数据结构与算法之美

https://en.wikipedia.org/wiki/D-ary_heap

A Back-to-Basics Empirical Study of Priority Queues

.NET 6 优先队列 PriorityQueue 实现分析的更多相关文章

  1. 【Java源码】集合类-优先队列PriorityQueue

    一.类继承关系 public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serial ...

  2. [Swift]实现优先队列PriorityQueue

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  3. Java的优先队列PriorityQueue详解

    一.优先队列概述 优先队列PriorityQueue是Queue接口的实现,可以对其中元素进行排序, 可以放基本数据类型的包装类(如:Integer,Long等)或自定义的类 对于基本数据类型的包装器 ...

  4. Java优先队列PriorityQueue的各种打开方式以及一些你不知道的细节

    目录 Java优先队列PriorityQueue的各种打开方式以及一些你不知道的细节 优先队列的默认用法-从小到大排序 对String类用优先队列从大到小排序 通过自定义比较器对自定义的类进行从小到大 ...

  5. 优先队列PriorityQueue实现 大小根堆 解决top k 问题

    转载:https://www.cnblogs.com/lifegoesonitself/p/3391741.html PriorityQueue是从JDK1.5开始提供的新的数据结构接口,它是一种基于 ...

  6. 优先队列(priorityqueue)

    队列是先进先出的线性表,顾名思义,优先队列则是元素有优先级的队列,出列的顺序由元素的优先级决定.从优先队列中删除元素是根据优先权的高低次序,而不是元素进入队列的次序.优先队列的典型应用是机器调度等. ...

  7. [Swift]优先队列PriorityQueue(自定义数据结构)

    优先队列[priority queue] 普通的队列是一种先进先出的数据结构,元素在队列尾追加,而从队列头删除. 优先队列特点:在优先队列中,元素被赋予优先级. 当访问元素时,具有最高优先级的元素最先 ...

  8. Python 标准库 —— 队列(Queue,优先队列 PriorityQueue)

    优先队列,有别于普通队列的先入先出(虽然字面上还是队列,但其实无论从含义还是实现上,和普通队列都有很大的区别),也有别于栈的先入后出.在实现上,它一般通过堆这一数据结构,而堆其实是一种完全二叉树,它会 ...

  9. PriorityQueue原理分析——基于源码

    在业务场景中,处理一个任务队列,可能需要依照某种优先级顺序,这时,Java中的PriorityQueue(优先队列)便可以派上用场.优先队列的原理与堆排序密不可分,可以参考我之前的一篇博客: 堆排序总 ...

随机推荐

  1. 【JavaSE】IO(1)-- File类

    File类 2019-07-01  22:41:42  by冲冲 在 Java 中,File 类是 java.io 包中唯一映射磁盘文件本身的对象.File类可以获取文件的相关信息(查看文件名.路径. ...

  2. JOI 2020 Final 题解

    T1. 只不过是长的领带 大水题,把 \(a_i,b_i\) 从小到大排序. 发现最优方案只可能是大的 \(a_i\) 跟大的 \(b_i\) 匹配,小的 \(a_i\) 与小的 \(b_i\) 匹配 ...

  3. 洛谷 P3600 - 随机数生成器(期望 dp)

    题面传送门 我竟然独立搞出了这道黑题!incredible! u1s1 这题是我做题时间跨度最大的题之一-- 首先讲下我四个月前想出来的 \(n^2\log n\) 的做法吧. 记 \(f(a)=\m ...

  4. NOIP2021 游记

    不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分不要挂分释迦牟尼脚绽莲花菩提达摩你真伟大天上天下唯我独尊如来佛祖太上老君耶稣耶稣 ...

  5. P6973 [NEERC2016]List of Primes

    题目传送门. 题意简述:将质数集合的所有子集按照子集和为第一关键字,字典序为第二关键字从小到大排序,求最终形成的字符串的第 \(l\sim r\) 个字符. 在 cnblogs 内查看. 又是一道妙妙 ...

  6. perl substr

    substr EXPR,OFFSET,LENGTH,REPLACEMENT substr EXPR,OFFSET,LENGTH substr EXPR,OFFSET Extracts a substr ...

  7. Redis—怎么查看Linux有没有安装Redis,如何启动Redis

    1.检测是否有安装redis-cli和redis-server [root@localhost bin]# whereis redis-cli redis-cli: /usr/bin/redis-cl ...

  8. 通用的js异步ajax文件上传函数

    无需表单,直接加点击事件即可, caseimg为input表单,image为图片显示 function upimage() { $('#form-upload').remove(); $('body' ...

  9. UE4之Slate:App默认窗口的创建流程

    UE4版本:4.24.3源码编译 Windows10 + VS2019开发环境 在先前分享的基础上,现在来梳理下App启动时默认窗口的创建流程,以及相关的类.对象之间的抽象层级: 纯C++工程配置 S ...

  10. Redis | 第10章 二进制数组、慢查询日志和监视器《Redis设计与实现》

    目录 前言 1. 二进制位数组 1.1 位数组的表示 1.2 GETBIT 命令的实现 1.3 SETBIT 命令的实现 1.4 BITECOUNT 命令的实现 1.5 BITOP 命令的实现 2. ...