在分析一个SQL的性能好坏时,除了执行计划,另外一个常看的指标是"Handler_read_*"相关变量。

  • Handler_read_key

  • Handler_read_first

  • Handler_read_last

  • Handler_read_next

  • Handler_read_prev

  • Handler_read_rnd

  • Handler_read_rnd_next

这七个变量,官方文档也有讲解,但很多人看完后,还是一头雾水。

下面结合具体的示例,来看看这七个变量的具体含义和区别。

Handler

首先说说什么是handler。

handler是一个类,里面按不同的功能模块定义了若干接口(具体可参考sql/handler.h)。其中,

DML操作相关的接口有:

  • write_row()

  • update_row()

  • delete_row()

  • delete_all_rows()

  • start_bulk_insert()

  • end_bulk_insert()

索引扫描相关的接口有:

  • index_read_map()

  • index_init()

  • index_end()

  • index_read_idx_map()

  • index_next()

  • index_prev()

  • index_first()

  • index_last()

  • index_next_same()

  • index_read_last_map()

  • read_range_first()

  • read_range_next()

其它相关接口可参考sql/handler.h,sql/handler.cc文件。

如此设计,有两点显而易见的好处:

1.  Server层与存储引擎层解耦。MySQL Server层在与存储引擎层交互时,无需关心存储引擎层的实现细节,直接调用handler对象的相关方法即可。

2.  降低了新引擎的引入门槛。如MyRocks。

测试数据

mysql> show create table t1\G
*************************** 1. row ***************************
Table: t1
Create Table: CREATE TABLE `t1` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`k` int(10) unsigned NOT NULL DEFAULT '0',
`c` varchar(20) NOT NULL DEFAULT '',
`pad` varchar(20) NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k` (`k`)
) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT CHARSET=utf8mb4
1 row in set (0.00 sec) mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 100 |
+----------+
1 row in set (0.00 sec) mysql> select * from t1 limit 6;
+----+---+--------+----------+
| id | k | c | pad |
+----+---+--------+----------+
| 1 | 1 | test_c | test_pad |
| 2 | 1 | test_c | test_pad |
| 3 | 1 | test_c | test_pad |
| 4 | 4 | test_c | test_pad |
| 5 | 5 | test_c | test_pad |
| 6 | 6 | test_c | test_pad |
+----+---+--------+----------+
6 rows in set (0.00 sec)

Handler_read_key

首先看看官档的解释

The number of requests to read a row based on a key. If this value is high, it is a good indication that your tables are properly indexed for your queries.

简而言之,即基于索引来定位记录,该值越大,代表基于索引的查询越多。

看看下面这个Demo。

mysql> flush status;
Query OK, 0 rows affected (0.00 sec) mysql> select * from t1 where id=1;
+----+---+--------+----------+
| id | k | c | pad |
+----+---+--------+----------+
| 1 | 1 | test_c | test_pad |
+----+---+--------+----------+
1 row in set (0.00 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 0 |
| Handler_read_key | 1 |
| Handler_read_last | 0 |
| Handler_read_next | 0 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 0 |
+-----------------------+-------+
7 rows in set (0.00 sec)

测试中有两点发现:

1.  无论是基于主键,还是二级索引进行等值查询,Handler_read_key都会加1。

2.  对于二级索引,如果返回了N条记录,Handler_read_next会相应加N。

Handler_read_first

首先看看官档的解释

The number of times the first entry in an index was read. If this value is high, it suggests that the server is doing a lot of full index scans (for example, SELECT col1 FROM foo, assuming that col1 is indexed).

读取索引的第一个值,该值越大,代表涉及索引全扫描的查询越多。

但是,这并不意味着查询利用到了索引,还需要结合其它的Handler_read_xxx来分析。

看看下面这个Demo

mysql> flush status;
Query OK, 0 rows affected (0.02 sec) mysql> select * from t1 where c='0';
Empty set (0.10 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 1 |
| Handler_read_key | 1 |
| Handler_read_last | 0 |
| Handler_read_next | 0 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 101 |
+-----------------------+-------+
7 rows in set (0.01 sec)

基于c来查询,c不是索引,故走的是全表扫描(通过Handler_read_rnd_next的值和表的总行数也可判断出来),但Handler_read_first和 Handler_read_key同样也增加了。

下面再看看另外一个Demo

mysql> flush status;
Query OK, 0 rows affected (0.00 sec) mysql> select * from t2 where c='0';
Empty set (0.00 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 0 |
| Handler_read_key | 0 |
| Handler_read_last | 0 |
| Handler_read_next | 0 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 101 |
+-----------------------+-------+
7 rows in set (0.00 sec)

t2和t1基本一样,只不过t2是MyISAM表,此时只增加了Handler_read_rnd_next。

之所以会这样,是因为t1是Innodb表,而Innodb是索引组织表,全表扫描实际上是基于主键来做的,所以Handler_read_first和Handler_read_key都会相应加1。

而t2是MyISAM表,MyISAM是堆表。

所以,单凭Handler_read_first很难评估查询的优劣。

Handler_read_last

首先看看官档的解释

The number of requests to read the last key in an index. With ORDER BY, the server issues a first-key request followed by several next-key requests, whereas with ORDER BY DESC, the server issues a last-key request followed by several previous-key requests.

和Handler_read_first相反,是读取索引的最后一个值。

该值增加基本上可以判定查询中使用了基于索引的order by desc子句。

看看下面两个Demo

1. 基于主键的正向排序

mysql> flush status;
Query OK, 0 rows affected (0.00 sec) mysql> select * from t1 order by id limit 10;
...
10 rows in set (0.00 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 1 |
| Handler_read_key | 1 |
| Handler_read_last | 0 |
| Handler_read_next | 9 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 0 |
+-----------------------+-------+
7 rows in set (0.00 sec)

可以看到,增加的还是Handler_read_first和Handler_read_nex t。

2. 基于主键的反向排序

mysql> flush status;
Query OK, 0 rows affected (0.00 sec) mysql> select * from t1 order by id desc limit 10;
...
10 rows in set (0.00 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 0 |
| Handler_read_key | 1 |
| Handler_read_last | 1 |
| Handler_read_next | 0 |
| Handler_read_prev | 9 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 0 |
+-----------------------+-------+
7 rows in set (0.00 sec)

此时增加的是Handler_read_last和Handler_read_ prev。

Handler_read_next

首先看看官档的解释

The number of requests to read the next row in key order. This value is incremented if you are querying an index column with a range constraint or if you are doing an index scan.

根据索引的顺序来读取下一行的值,常用于基于索引的范围扫描和order by limit子句中。

看看下面两个Demo

1. 基于索引的范围查询

mysql> flush status;
Query OK, 0 rows affected (0.00 sec) mysql> select * from t1 where k < 2;
+----+---+--------+----------+
| id | k | c | pad |
+----+---+--------+----------+
| 1 | 1 | test_c | test_pad |
| 2 | 1 | test_c | test_pad |
| 3 | 1 | test_c | test_pad |
+----+---+--------+----------+
3 rows in set (0.00 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 1 |
| Handler_read_key | 1 |
| Handler_read_last | 0 |
| Handler_read_next | 3 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 0 |
+-----------------------+-------+
7 rows in set (0.00 sec)

2. 基于索引的order by子句

mysql> flush status;
Query OK, 0 rows affected (0.00 sec) mysql> select * from t1 force index(k) order by k limit 10;
...
10 rows in set (0.00 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 1 |
| Handler_read_key | 1 |
| Handler_read_last | 0 |
| Handler_read_next | 9 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 0 |
+-----------------------+-------+
7 rows in set (0.01 sec)

注意:该查询使用了hint,强制索引,如果没用的话,会走全表扫描。

Handler_read_prev

首先看看官档的解释

The number of requests to read the previous row in key order. This read method is mainly used to optimize ORDER BY ... DESC.

根据索引的顺序来读取上一行的值。一般用于基于索引的order by desc子句中。

具体示例可参考Handler_read_last。

Handler_read_rnd

首先看看官档的解释

The number of requests to read a row based on a fixed position. This value is high if you are doing a lot of queries that require sorting of the result. You probably have a lot of queries that require MySQL to scan entire tables or you have joins that do not use keys properly.

基于固定位置来读取记录。

关于固定位置的定义,不同的存储引擎有不同的说法

For MyISAM, position really means a byte offset from the beginning of the file. For InnoDB, it means to read a row based on a primary key value.

下面看看Handler_read_rnd的使用场景

Usually Handler_read_rnd is called when a sort operation gathers a list of tuples and their “position” values, sorts the tuples by some criterion, and then traverses the sorted list, using the position to fetch each one. This is quite likely to result in retrieving rows from random points in the table, although that might not actually result in random IO if the data is all in memory.

大意是对记录基于某种标准进行排序,然后再根据它们的位置信息来遍历排序后的结果,这往往会导致表的随机读。

看看下面这个Demo

mysql> flush status;
Query OK, 0 rows affected (0.01 sec) mysql> select * from t1 order by rand() limit 10;
...
10 rows in set (0.00 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 1 |
| Handler_read_key | 1 |
| Handler_read_last | 0 |
| Handler_read_next | 0 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 10 |
| Handler_read_rnd_next | 202 |
+-----------------------+-------+
7 rows in set (0.00 sec)

这里使用了order by rand()来生成随机记录。虽然只生成了10条记录,但Handler_read_rnd_next却调用了202次,比全表扫描还多,所以线上不建议使用order by rand()来生成随机记录。

Handler_read_rnd_next

首先看看官档的解释

The number of requests to read the next row in the data file. This value is high if you are doing a lot of table scans. Generally this suggests that your tables are not properly indexed or that your queries are not written to take advantage of the indexes you have.

读取下一行记录的次数,常用于全表扫描中。

实现原理

Handler_read_rnd_next is incremented when handler::rnd_next() is called. This is basically a cursor operation: read the "next" row in the table. The operation advances the cursor position so the next time it’s called, you get the next row.

看看下面两个Demo

1.  全表扫描,带有limit条件

mysql> flush status;
Query OK, 0 rows affected (0.03 sec) mysql> select * from t1 limit 50;
...
50 rows in set (0.00 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 1 |
| Handler_read_key | 1 |
| Handler_read_last | 0 |
| Handler_read_next | 0 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 50 |
+-----------------------+-------+
7 rows in set (0.01 sec)

2.  全表扫描

mysql> flush status;
Query OK, 0 rows affected (0.00 sec) mysql> select * from t1;
...
100 rows in set (0.00 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 1 |
| Handler_read_key | 1 |
| Handler_read_last | 0 |
| Handler_read_next | 0 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 101 |
+-----------------------+-------+
7 rows in set (0.00 sec)

细心的童鞋可能会发现,limit 50时Handler_read_rnd_next为50,而不带limit条件时,Handler_read_rnd_next却为101,不是只有100行数据么?

实际上,在做全表扫描时,MySQL也并不知道表有多少行,它会不断调用handler::rnd_next()函数,直至记录返回完毕。

所以最后一次调用虽然为空,但毕竟调用了这个函数,故Handler_read_rnd_next需在表的总行数的基础上加1。

综合案例

最后,来个综合一点的案例,看看两表关联查询,各状态值又是怎样的呢?

在这里,会涉及到MySQL的Nest Loop算法。

mysql> flush status;
Query OK, 0 rows affected (0.01 sec) mysql> select * from t1 t_1,t1 t_2 where t_1.k=t_2.k;
+-----+-----+--------+----------+-----+-----+--------+----------+
| id | k | c | pad | id | k | c | pad |
+-----+-----+--------+----------+-----+-----+--------+----------+
| 1 | 1 | test_c | test_pad | 1 | 1 | test_c | test_pad |
| 1 | 1 | test_c | test_pad | 2 | 1 | test_c | test_pad |
| 1 | 1 | test_c | test_pad | 3 | 1 | test_c | test_pad |
| 2 | 1 | test_c | test_pad | 1 | 1 | test_c | test_pad |
| 2 | 1 | test_c | test_pad | 2 | 1 | test_c | test_pad |
| 2 | 1 | test_c | test_pad | 3 | 1 | test_c | test_pad |
| 3 | 1 | test_c | test_pad | 1 | 1 | test_c | test_pad |
| 3 | 1 | test_c | test_pad | 2 | 1 | test_c | test_pad |
| 3 | 1 | test_c | test_pad | 3 | 1 | test_c | test_pad |
| 4 | 4 | test_c | test_pad | 4 | 4 | test_c | test_pad |
| 5 | 5 | test_c | test_pad | 5 | 5 | test_c | test_pad |
| 6 | 6 | test_c | test_pad | 6 | 6 | test_c | test_pad |
...
106 rows in set (0.01 sec) mysql> desc select * from t1 t_1,t1 t_2 where t_1.k=t_2.k;
+----+-------------+-------+------+---------------+------+---------+----------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+----------------+------+-------+
| 1 | SIMPLE | t_1 | ALL | k | NULL | NULL | NULL | 100 | NULL |
| 1 | SIMPLE | t_2 | ref | k | k | 4 | slowtech.t_1.k | 1 | NULL |
+----+-------------+-------+------+---------------+------+---------+----------------+------+-------+
2 rows in set (0.00 sec) mysql> show status like '%Handler_read%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 1 |
| Handler_read_key | 101 |
| Handler_read_last | 0 |
| Handler_read_next | 106 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 101 |
+-----------------------+-------+
7 rows in set (0.00 sec)

通过执行计划可以看出,该查询的处理流程大致如下:

for each row in t_1  {
for each row in t_2 where t_2.k = each_row.k {
send to client
}
}

接着,来分析下输出结果

1.  对t_1表进行全表扫描,全表扫描对应的状态值是Handler_read_first = 1,Handler_read_key = 1,Handle r_read_rnd_next = 101。

2.  因为t_1表有100行,所以会对t_2基于k值进行100次查询,对应的,Handler_read_key = 100。

3.  观察t1表k值的分布,当id=1,2,3时,k的值均为1,其它id的k值不相同。所以一共会返回106条记录,对应的,Handler_read_next = 106。

总结

1. Handler_read_key的值越大越好,代表基于索引的查询较多。

2. Handler_read_first,Handler_read_last,Handler_read_next,Handler_read_prev都会利用索引。但查询是否高效还需要结合其它Handler_read值来判断。

3. Handler_read_rnd不宜过大。

4. Handler_read_rnd_next不宜过大,过大的话,代表全表扫描过多,要引起足够的警惕。

参考资料

https://www.percona.com/blog/2010/06/15/what-does-handler_read_rnd-mean/

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Handler_read_first

Handler_read_*的总结的更多相关文章

  1. MySQL执行SHOW STATUS查询服务器状态状态之Handler_read_* 详解

    在MySQL里,我们一般使用SHOW STATUS查询服务器状态,语法一般来说如下: SHOW [GLOBAL | SESSION] STATUS [LIKE ‘pattern’ | WHERE ex ...

  2. mysql中的handler_read_%

    mysql> show status like 'handler_read_%'; +-----------------------+-------+ | Variable_name | Val ...

  3. 0227浅谈MySQL之 Handler_read_*参数

    转自博客http://www.path8.net/tn/archives/5613 1.监控语法: 在MySQL里,使用SHOW STATUS查询服务器状态,语法一般来说如下: SHOW [GLOBA ...

  4. THE HANDLER_READ_* STATUS VARIABLES

    Because I do a lot of Performance Tuning gigs I get often in contact with these status variables. In ...

  5. MYSQL: Handler_read_%参数说明

      环境: 表t_feed_idx(user_id bigint, feed_id bigint, KEY (`user_id`,`feed_id`)) engine=innodb;表t_feed_i ...

  6. MYSQL之HANDLER_READ_*详细讲解

    http://www.databaseclub.com/category/performance/

  7. mysql 证明为什么用limit时,offset很大会影响性能

    本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/117 首先说明一下MySQL的版本: mysql> sel ...

  8. mysql用limit时offset越大时间越长

    首先说明一下MySQL的版本:mysql> select version();+-----------+| version() |+-----------+| 5.7.17    |+----- ...

  9. MySQL索引扩展(Index Extensions)学习总结

    MySQL InnoDB的二级索引(Secondary Index)会自动补齐主键,将主键列追加到二级索引列后面.详细一点来说,InnoDB的二级索引(Secondary Index)除了存储索引列k ...

随机推荐

  1. W32Dasm缓冲区溢出分析【转载】

    课程简介 在上次课程中与大家一起学习了编写通用的Shellcode,也提到会用一个实例来展示Shellcode的溢出. 那么本次课程中为大家准备了W32Dasm这款软件,并且是存在漏洞的版本.利用它的 ...

  2. Linux-鸟菜-2-主机规划与磁盘分区

    Linux-鸟菜-2-主机规划与磁盘分区 开机流程: 1. BIOS:開機主動執行的韌體,會認識第一個可開機的裝置: 2. MBR:第一個可開機裝置的第一個磁區內的主要開機記錄區塊,內含開機管理程式: ...

  3. Debuggee not connected 寒江孤钓<<windows 内核安全编程>> 学习笔记

    双机联调出现的问题 真机系统win7 虚拟机系统xp 安装书中的配置一步一步走,发现最后启动系统后,windbg一直显示 Opened \\.\pipe\com_1Waiting to reconne ...

  4. jquery里面.length和.size()有什么区别

    区别: 1.针对标签对象元素,比如数html页面有多少个段落元素<p></p>,那么此时的$("p").size()==$("p").l ...

  5. Mac/Win录屏工具推荐-LICEcap

    轻小.便捷.操作简单 下载 LICEcap v1.30 for macOS LICEcap v1.28 for Windows 参考地址

  6. Asp.NetCore Web开发之初始文件解析

    在写代码之前,有必要了解一下.net帮我们生成的文件都是干什么用的,在开发过程中他们都负责那些地方(下面以MVC模板举例). 先简单介绍一下什么是MVC,MVC(model-view-controll ...

  7. golang:数据类型总结

    Go语言将数据类型分为四类:基础类型.复合类型.引用类型和接口类型. 基础数据类型包括: 基础类型: - 布尔型.整型.浮点型.复数型.字符型.字符串型.错误类型. 复合数据类型包括: - 指针.数组 ...

  8. [bug] springboot 静态资源 layui.css 404

    目录结构 引用路径 <link rel="stylesheet" href="../static/layui/css/layui.css" type=&q ...

  9. [Windows] 屏幕截图 - FastStone Capture(FSCapture) v9.4 飞扬时空汉化绿色版(官方地址) 【清晰好用 已验证】

    [Windows] 屏幕截图 - FastStone Capture(FSCapture) v9.4 飞扬时空汉化绿色版(官方地址) [复制链接]     愤怒の葡萄 电梯直达 楼主    发表于 2 ...

  10. bond4以及vlan子接口配置

    场景: 前提,交换机的配置由网络工程师配合! 1.跨交换机做bond,模式为LACP,linux双网卡做bond4,模式为4: 2.系统为centos7.0-123: 3.服务器仅有两张万兆网卡,为e ...