深度学习框架:GPU

Deep Learning Frameworks

深度学习框架通过高级编程接口为设计、训练和验证深度神经网络提供了构建块。广泛使用的深度学习框架如MXNet、PyTorch、TensorFlow等依赖于GPU加速库如cuDNN、NCCL和DALI来提供高性能的多GPU加速训练。             

开发人员、研究人员和数据科学家可以通过深度学习示例轻松访问NVIDIA优化的深度学习框架容器,这些容器针对NVIDIA gpu进行性能调整和测试。这样就不需要管理包和依赖项,也不需要从源代码构建深入的学习框架。访问NVIDIA NGC了解更多信息并开始使用。             

以下是支持的流行深度学习框架列表,包括开始学习所需的学习资源。             

一.PyTorch             

PyTorch是一个Python包,提供了两个高级特性:             

具有强GPU加速度的张量计算(如numpy)             

基于带基自蔓延系统的深层神经网络             

可以重用最喜欢的Python包,如numpy、scipy和Cython,以便在需要时扩展PyTorch。

模型部署:             

对于训练模型的高性能推理部署,请导出到ONNX格式,并使用NVIDIA TensorRT推理加速器进行优化和部署。

二.MXNet            

MXNet是一个为提高效率和灵活性而设计的深度学习框架。允许混合符号编程和命令式编程的风格,以最大限度地提高效率和生产力。             

的核心是一个动态依赖调度程序,可以动态地自动并行化符号和命令操作。上面的一个图形优化层使符号执行速度更快,内存效率更高。这个库是可移植的和轻量级的,可以扩展到多个gpu和多台机器。

模型部署:             

对于MXNet训练模型的高性能推理部署,请导出到ONNX格式,并使用NVIDIA TensorRT推理加速器进行优化和部署。

三.TensorFlow             

TensorFlow是一个开放源码的软件库,用于使用数据流图进行数值计算。图中的节点表示数学运算,而图边表示在之间流动的多维数据数组(张量)。这种灵活的架构允许将计算部署到桌面、服务器或移动设备中的一个或多个CPU或GPU,而无需重写代码。为了可视化TensorFlow结果,TensorFlow提供了TensorBoard,一套可视化工具。

模型部署:             

对于TensorFlow训练模型的高性能推理部署,可以:             

使用TensorFlow TensorRT集成优化TensorFlow内的模型并使用TensorFlow部署             

导出TensorFlow模型,并使用NVIDIA TensorRT内置的TensorFlow模型导入器导入、优化和部署。

四.NVIDIA Caffe

Caffe是由伯克利视觉和学习中心(BVLC)和社区贡献者开发的。NVIDIA Caffe,也称为NVCaffe,是NVIDIA维护的BVLC Caffe分支,专为NVIDIA GPU(特别是在多GPU配置中)调整。

模型部署:

对于Caffe训练模型的高性能推理部署,使用NVIDIA TensorRT的内置Caffe模型导入器导入、优化和部署。

五.MATLAB

MATLAB使工程师、科学家和领域专家更容易进行深入学习。借助于管理和标记大型数据集的工具和功能,MATLAB还提供了用于机器学习、神经网络、计算机视觉和自动驾驶的专用工具箱。只需几行代码,MATLAB就可以创建和可视化模型,并将模型部署到服务器和嵌入式设备上,而无需成为专家。MATLAB还允许用户从MATLAB代码中自动生成用于深度学习和视觉应用的高性能CUDA代码。

模型部署:

为了实现基于MATLAB训练模型的高性能推理部署,利用MATLAB GPU编码器自动生成TensorRT优化的推理引擎。

六.Chainer

Chainer是一个基于Python的以灵活性为目标的深度学习框架。提供了基于define by run方法(也称为动态计算图)的自动区分api,以及用于构建和训练神经网络的面向对象高级api。支持CUDA和cuDNN使用CuPy进行高性能训练和推理。

模型部署:

对于链训练模型的高性能推理部署,请导出到ONNX格式,并使用NVIDIA TensorRT推理加速器进行优化和部署。

七.PaddlePaddle

PaddlePaddle为加载数据和指定模型结构提供了直观而灵活的界面。支持CNN,RNN,多种变体,并易于配置复杂的deep模型。

还提供极其优化的操作、内存回收和网络通信。桨叶可以方便地扩展异构计算资源和存储,加快训练过程。

深度学习框架:GPU的更多相关文章

  1. 深度学习框架gpu安装方法

    1.tensorflow pip install tensorflow-gpu==1.14.0,具体安装哪一个版本,可以把1.14.0随便填写一个数字,系统会提示可以有哪些版本可以安装 2.pytor ...

  2. [转]Caffe 深度学习框架上手教程

    Caffe 深度学习框架上手教程 机器学习Caffe caffe 原文地址:http://suanfazu.com/t/caffe/281   blink 15年1月 6   Caffe448是一个清 ...

  3. Caffe 深度学习框架介绍

    转自:http://suanfazu.com/t/caffe/281 Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,目前在Google工作. Caffe是 ...

  4. 贾扬清分享_深度学习框架caffe

    Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作.本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下. 目录 ...

  5. 深度学习框架Caffe的编译安装

    深度学习框架caffe特点,富有表达性.快速.模块化.下面介绍caffe如何在Ubuntu上编译安装. 1. 前提条件 安装依赖的软件包: CUDA 用来使用GPU模式计算. 建议使用 7.0 以上最 ...

  6. 深度学习框架-caffe安装-环境[Mac OSX 10.12]

    深度学习框架-caffe安装 [Mac OSX 10.12] [参考资源] 1.英文原文:(使用GPU) [http://hoondy.com/2015/04/03/how-to-install-ca ...

  7. 深度学习框架-caffe安装-Mac OSX 10.12

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 ...

  8. TensorFlow与主流深度学习框架对比

    引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年 ...

  9. 学习笔记︱Nvidia DIGITS网页版深度学习框架——深度学习版SPSS

    DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learnin ...

随机推荐

  1. Android敲诈者病毒“安卓性能激活”分析(2015年9月版)

    一.情况简介 前几天分析了论坛里的一个Android敲诈者病毒,感觉还是很有收获,后面有空多研究研究Android病毒.说句题外话, 根据前面分析的Android敲诈者病毒的隐藏手法,应该可以实现&q ...

  2. Node-Web模块

    创建服务端------------------------------------------------------ var http = require('http'); var fs = req ...

  3. Portswigger web security academy:DOM Based XSS

    Portswigger web security academy:DOM Based XSS 目录 Portswigger web security academy:DOM Based XSS DOM ...

  4. Spring Cloud 升级之路 - 2020.0.x - 4. 使用 Eureka 作为注册中心

    Eureka 目前的状态:Eureka 目前 1.x 版本还在更新,但是应该不会更新新的功能了,只是对现有功能进行维护,升级并兼容所需的依赖. Eureka 2.x 已经胎死腹中了.但是,这也不代表 ...

  5. 基于Gitlab的CICD流程

    本片文章主要初步介绍什么是CICD流程,并且把整个流程进行拆分理解整个流程的跑通过程. 1.CICD概述 什么是CICD呢? 简单的说CICD就是持续集成自动构建自动测试自动部署. 从概念上就可以看出 ...

  6. 不同规模的企业对CRM的需求是否相同?

    CRM客户管理系统在我们的认知中往往是中大型企业的选择.如今,越来越多中小规模企业开始使用CRM系统.CRM的功能随着发展变得越来越实用,可以满足不同行业不同业务规模的企业的需求.同时,CRM功能类型 ...

  7. 5分钟让你理解K8S必备架构概念,以及网络模型(中)

    写在前面 在这用XMind画了一张导图记录Redis的学习笔记和一些面试解析(源文件对部分节点有详细备注和参考资料,欢迎关注我的公众号:阿风的架构笔记 后台发送[导图]拿下载链接, 已经完善更新): ...

  8. osg纯手工画球+贴纹理

    手动计算球面顶点的坐标,纹理坐标,来画球并贴纹理 其中createSphereGeom()函数的的二个参数为18,意思是在经纬度上每10度设一个点,因为经度一共是180度,180/18=10,相当于横 ...

  9. [bug] Job for network.service failed because the control process exited with error code

    原因 复制虚拟机,没有改网卡配置文件 参考 https://blog.csdn.net/dongfei2033/article/details/81124465

  10. 对ansible不支持service模块的status命令进行修正

    原生的ansible不支持service.status,在Google之后,发现有人提交了一个patch,可以支持status选项.见https://github.com/ritzk/ansible- ...