XML

XML是实现不同语言或程序之间进行数据交换的协议,XML文件格式如下:

<data>
<country name="Liechtenstein">
<rank updated="yes">2</rank>
<year>2023</year>
<gdppc>141100</gdppc>
<neighbor direction="E" name="Austria" />
<neighbor direction="W" name="Switzerland" />
</country>
<country name="Singapore">
<rank updated="yes">5</rank>
<year>2026</year>
<gdppc>59900</gdppc>
<neighbor direction="N" name="Malaysia" />
</country>
<country name="Panama">
<rank updated="yes">69</rank>
<year>2026</year>
<gdppc>13600</gdppc>
<neighbor direction="W" name="Costa Rica" />
<neighbor direction="E" name="Colombia" />
</country>
</data>

1、解析XML

from xml.etree import ElementTree as ET

# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)

利用ElementTree.XML将字符串解析成xml对象

from xml.etree import ElementTree as ET

# 直接解析xml文件
tree = ET.parse("xo.xml") # 获取xml文件的根节点
root = tree.getroot()

利用ElementTree.parse将文件直接解析成xml对象

2、操作XML

XML格式类型是节点嵌套节点,对于每一个节点均有以下功能,以便对当前节点进行操作:

class Element:
"""An XML element. This class is the reference implementation of the Element interface. An element's length is its number of subelements. That means if you
want to check if an element is truly empty, you should check BOTH
its length AND its text attribute. The element tag, attribute names, and attribute values can be either
bytes or strings. *tag* is the element name. *attrib* is an optional dictionary containing
element attributes. *extra* are additional element attributes given as
keyword arguments. Example form:
<tag attrib>text<child/>...</tag>tail """ 当前节点的标签名
tag = None
"""The element's name.""" 当前节点的属性 attrib = None
"""Dictionary of the element's attributes.""" 当前节点的内容
text = None
"""
Text before first subelement. This is either a string or the value None.
Note that if there is no text, this attribute may be either
None or the empty string, depending on the parser. """ tail = None
"""
Text after this element's end tag, but before the next sibling element's
start tag. This is either a string or the value None. Note that if there
was no text, this attribute may be either None or an empty string,
depending on the parser. """ def __init__(self, tag, attrib={}, **extra):
if not isinstance(attrib, dict):
raise TypeError("attrib must be dict, not %s" % (
attrib.__class__.__name__,))
attrib = attrib.copy()
attrib.update(extra)
self.tag = tag
self.attrib = attrib
self._children = [] def __repr__(self):
return "<%s %r at %#x>" % (self.__class__.__name__, self.tag, id(self)) def makeelement(self, tag, attrib):
创建一个新节点
"""Create a new element with the same type. *tag* is a string containing the element name.
*attrib* is a dictionary containing the element attributes. Do not call this method, use the SubElement factory function instead. """
return self.__class__(tag, attrib) def copy(self):
"""Return copy of current element. This creates a shallow copy. Subelements will be shared with the
original tree. """
elem = self.makeelement(self.tag, self.attrib)
elem.text = self.text
elem.tail = self.tail
elem[:] = self
return elem def __len__(self):
return len(self._children) def __bool__(self):
warnings.warn(
"The behavior of this method will change in future versions. "
"Use specific 'len(elem)' or 'elem is not None' test instead.",
FutureWarning, stacklevel=2
)
return len(self._children) != 0 # emulate old behaviour, for now def __getitem__(self, index):
return self._children[index] def __setitem__(self, index, element):
# if isinstance(index, slice):
# for elt in element:
# assert iselement(elt)
# else:
# assert iselement(element)
self._children[index] = element def __delitem__(self, index):
del self._children[index] def append(self, subelement):
为当前节点追加一个子节点
"""Add *subelement* to the end of this element. The new element will appear in document order after the last existing
subelement (or directly after the text, if it's the first subelement),
but before the end tag for this element. """
self._assert_is_element(subelement)
self._children.append(subelement) def extend(self, elements):
为当前节点扩展 n 个子节点
"""Append subelements from a sequence. *elements* is a sequence with zero or more elements. """
for element in elements:
self._assert_is_element(element)
self._children.extend(elements) def insert(self, index, subelement):
在当前节点的子节点中插入某个节点,即:为当前节点创建子节点,然后插入指定位置
"""Insert *subelement* at position *index*."""
self._assert_is_element(subelement)
self._children.insert(index, subelement) def _assert_is_element(self, e):
# Need to refer to the actual Python implementation, not the
# shadowing C implementation.
if not isinstance(e, _Element_Py):
raise TypeError('expected an Element, not %s' % type(e).__name__) def remove(self, subelement):
在当前节点在子节点中删除某个节点
"""Remove matching subelement. Unlike the find methods, this method compares elements based on
identity, NOT ON tag value or contents. To remove subelements by
other means, the easiest way is to use a list comprehension to
select what elements to keep, and then use slice assignment to update
the parent element. ValueError is raised if a matching element could not be found. """
# assert iselement(element)
self._children.remove(subelement) def getchildren(self):
获取所有的子节点(废弃)
"""(Deprecated) Return all subelements. Elements are returned in document order. """
warnings.warn(
"This method will be removed in future versions. "
"Use 'list(elem)' or iteration over elem instead.",
DeprecationWarning, stacklevel=2
)
return self._children def find(self, path, namespaces=None):
获取第一个寻找到的子节点
"""Find first matching element by tag name or path. *path* is a string having either an element tag or an XPath,
*namespaces* is an optional mapping from namespace prefix to full name. Return the first matching element, or None if no element was found. """
return ElementPath.find(self, path, namespaces) def findtext(self, path, default=None, namespaces=None):
获取第一个寻找到的子节点的内容
"""Find text for first matching element by tag name or path. *path* is a string having either an element tag or an XPath,
*default* is the value to return if the element was not found,
*namespaces* is an optional mapping from namespace prefix to full name. Return text content of first matching element, or default value if
none was found. Note that if an element is found having no text
content, the empty string is returned. """
return ElementPath.findtext(self, path, default, namespaces) def findall(self, path, namespaces=None):
获取所有的子节点
"""Find all matching subelements by tag name or path. *path* is a string having either an element tag or an XPath,
*namespaces* is an optional mapping from namespace prefix to full name. Returns list containing all matching elements in document order. """
return ElementPath.findall(self, path, namespaces) def iterfind(self, path, namespaces=None):
获取所有指定的节点,并创建一个迭代器(可以被for循环)
"""Find all matching subelements by tag name or path. *path* is a string having either an element tag or an XPath,
*namespaces* is an optional mapping from namespace prefix to full name. Return an iterable yielding all matching elements in document order. """
return ElementPath.iterfind(self, path, namespaces) def clear(self):
清空节点
"""Reset element. This function removes all subelements, clears all attributes, and sets
the text and tail attributes to None. """
self.attrib.clear()
self._children = []
self.text = self.tail = None def get(self, key, default=None):
获取当前节点的属性值
"""Get element attribute. Equivalent to attrib.get, but some implementations may handle this a
bit more efficiently. *key* is what attribute to look for, and
*default* is what to return if the attribute was not found. Returns a string containing the attribute value, or the default if
attribute was not found. """
return self.attrib.get(key, default) def set(self, key, value):
为当前节点设置属性值
"""Set element attribute. Equivalent to attrib[key] = value, but some implementations may handle
this a bit more efficiently. *key* is what attribute to set, and
*value* is the attribute value to set it to. """
self.attrib[key] = value def keys(self):
获取当前节点的所有属性的 key """Get list of attribute names. Names are returned in an arbitrary order, just like an ordinary
Python dict. Equivalent to attrib.keys() """
return self.attrib.keys() def items(self):
获取当前节点的所有属性值,每个属性都是一个键值对
"""Get element attributes as a sequence. The attributes are returned in arbitrary order. Equivalent to
attrib.items(). Return a list of (name, value) tuples. """
return self.attrib.items() def iter(self, tag=None):
在当前节点的子孙中根据节点名称寻找所有指定的节点,并返回一个迭代器(可以被for循环)。
"""Create tree iterator. The iterator loops over the element and all subelements in document
order, returning all elements with a matching tag. If the tree structure is modified during iteration, new or removed
elements may or may not be included. To get a stable set, use the
list() function on the iterator, and loop over the resulting list. *tag* is what tags to look for (default is to return all elements) Return an iterator containing all the matching elements. """
if tag == "*":
tag = None
if tag is None or self.tag == tag:
yield self
for e in self._children:
yield from e.iter(tag) # compatibility
def getiterator(self, tag=None):
# Change for a DeprecationWarning in 1.4
warnings.warn(
"This method will be removed in future versions. "
"Use 'elem.iter()' or 'list(elem.iter())' instead.",
PendingDeprecationWarning, stacklevel=2
)
return list(self.iter(tag)) def itertext(self):
在当前节点的子孙中根据节点名称寻找所有指定的节点的内容,并返回一个迭代器(可以被for循环)。
"""Create text iterator. The iterator loops over the element and all subelements in document
order, returning all inner text. """
tag = self.tag
if not isinstance(tag, str) and tag is not None:
return
if self.text:
yield self.text
for e in self:
yield from e.itertext()
if e.tail:
yield e.tail

节点功能一览表

由于 每个节点 都具有以上的方法,并且在上一步骤中解析时均得到了root(xml文件的根节点),so   可以利用以上方法进行操作xml文件。

a. 遍历XML文档的所有内容

from xml.etree import ElementTree as ET

############ 解析方式一 ############
"""
# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)
"""
############ 解析方式二 ############ # 直接解析xml文件
tree = ET.parse("xo.xml") # 获取xml文件的根节点
root = tree.getroot() ### 操作 # 顶层标签
print(root.tag) # 遍历XML文档的第二层
for child in root:
# 第二层节点的标签名称和标签属性
print(child.tag, child.attrib)
# 遍历XML文档的第三层
for i in child:
# 第二层节点的标签名称和内容
print(i.tag,i.text)

b、遍历XML中指定的节点

from xml.etree import ElementTree as ET

############ 解析方式一 ############
"""
# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)
"""
############ 解析方式二 ############ # 直接解析xml文件
tree = ET.parse("xo.xml") # 获取xml文件的根节点
root = tree.getroot() ### 操作 # 顶层标签
print(root.tag) # 遍历XML中所有的year节点
for node in root.iter('year'):
# 节点的标签名称和内容
print(node.tag, node.text)

c、修改节点内容

由于修改的节点时,均是在内存中进行,其不会影响文件中的内容。所以,如果想要修改,则需要重新将内存中的内容写到文件。

from xml.etree import ElementTree as ET

############ 解析方式一 ############

# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml) ############ 操作 ############ # 顶层标签
print(root.tag) # 循环所有的year节点
for node in root.iter('year'):
# 将year节点中的内容自增一
new_year = int(node.text) + 1
node.text = str(new_year) # 设置属性
node.set('name', 'alex')
node.set('age', '18')
# 删除属性
del node.attrib['name'] ############ 保存文件 ############
tree = ET.ElementTree(root)
tree.write("newnew.xml", encoding='utf-8')

解析字符串方式,修改,保存

from xml.etree import ElementTree as ET

############ 解析方式二 ############

# 直接解析xml文件
tree = ET.parse("xo.xml") # 获取xml文件的根节点
root = tree.getroot() ############ 操作 ############ # 顶层标签
print(root.tag) # 循环所有的year节点
for node in root.iter('year'):
# 将year节点中的内容自增一
new_year = int(node.text) + 1
node.text = str(new_year) # 设置属性
node.set('name', 'alex')
node.set('age', '18')
# 删除属性
del node.attrib['name'] ############ 保存文件 ############
tree.write("newnew.xml", encoding='utf-8')

解析文件方式,修改,保存

d、删除节点

from xml.etree import ElementTree as ET

############ 解析字符串方式打开 ############

# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml) ############ 操作 ############ # 顶层标签
print(root.tag) # 遍历data下的所有country节点
for country in root.findall('country'):
# 获取每一个country节点下rank节点的内容
rank = int(country.find('rank').text) if rank > 50:
# 删除指定country节点
root.remove(country) ############ 保存文件 ############
tree = ET.ElementTree(root)
tree.write("newnew.xml", encoding='utf-8')

解析字符串方式打开,删除,保存

from xml.etree import ElementTree as ET

############ 解析文件方式 ############

# 直接解析xml文件
tree = ET.parse("xo.xml") # 获取xml文件的根节点
root = tree.getroot() ############ 操作 ############ # 顶层标签
print(root.tag) # 遍历data下的所有country节点
for country in root.findall('country'):
# 获取每一个country节点下rank节点的内容
rank = int(country.find('rank').text) if rank > 50:
# 删除指定country节点
root.remove(country) ############ 保存文件 ############
tree.write("newnew.xml", encoding='utf-8')

解析文件方式打开,删除,保存

3、创建XML文档

from xml.etree import ElementTree as ET

# 创建根节点
root = ET.Element("famliy") # 创建节点大儿子
son1 = ET.Element('son', {'name': '儿1'})
# 创建小儿子
son2 = ET.Element('son', {"name": '儿2'}) # 在大儿子中创建两个孙子
grandson1 = ET.Element('grandson', {'name': '儿11'})
grandson2 = ET.Element('grandson', {'name': '儿12'})
son1.append(grandson1)
son1.append(grandson2) # 把儿子添加到根节点中
root.append(son1)
root.append(son1) tree = ET.ElementTree(root)
tree.write('oooo.xml',encoding='utf-8', short_empty_elements=False)

创建方式(一)

from xml.etree import ElementTree as ET

# 创建根节点
root = ET.Element("famliy") # 创建大儿子
# son1 = ET.Element('son', {'name': '儿1'})
son1 = root.makeelement('son', {'name': '儿1'})
# 创建小儿子
# son2 = ET.Element('son', {"name": '儿2'})
son2 = root.makeelement('son', {"name": '儿2'}) # 在大儿子中创建两个孙子
# grandson1 = ET.Element('grandson', {'name': '儿11'})
grandson1 = son1.makeelement('grandson', {'name': '儿11'})
# grandson2 = ET.Element('grandson', {'name': '儿12'})
grandson2 = son1.makeelement('grandson', {'name': '儿12'}) son1.append(grandson1)
son1.append(grandson2) # 把儿子添加到根节点中
root.append(son1)
root.append(son1) tree = ET.ElementTree(root)
tree.write('oooo.xml',encoding='utf-8', short_empty_elements=False)

创建方式(二)

from xml.etree import ElementTree as ET

# 创建根节点
root = ET.Element("famliy") # 创建节点大儿子
son1 = ET.SubElement(root, "son", attrib={'name': '儿1'})
# 创建小儿子
son2 = ET.SubElement(root, "son", attrib={"name": "儿2"}) # 在大儿子中创建一个孙子
grandson1 = ET.SubElement(son1, "age", attrib={'name': '儿11'})
grandson1.text = '孙子' et = ET.ElementTree(root) #生成文档对象
et.write("test.xml", encoding="utf-8", xml_declaration=True, short_empty_elements=False)

创建方式(三)

由于原生保存的XML时默认无缩进,如果想要设置缩进的话, 需要修改保存方式:

from xml.etree import ElementTree as ET
from xml.dom import minidom def prettify(elem):
"""将节点转换成字符串,并添加缩进。
"""
rough_string = ET.tostring(elem, 'utf-8')
reparsed = minidom.parseString(rough_string)
return reparsed.toprettyxml(indent="\t") # 创建根节点
root = ET.Element("famliy") # 创建大儿子
# son1 = ET.Element('son', {'name': '儿1'})
son1 = root.makeelement('son', {'name': '儿1'})
# 创建小儿子
# son2 = ET.Element('son', {"name": '儿2'})
son2 = root.makeelement('son', {"name": '儿2'}) # 在大儿子中创建两个孙子
# grandson1 = ET.Element('grandson', {'name': '儿11'})
grandson1 = son1.makeelement('grandson', {'name': '儿11'})
# grandson2 = ET.Element('grandson', {'name': '儿12'})
grandson2 = son1.makeelement('grandson', {'name': '儿12'}) son1.append(grandson1)
son1.append(grandson2) # 把儿子添加到根节点中
root.append(son1)
root.append(son1) raw_str = prettify(root) f = open("xxxoo.xml",'w',encoding='utf-8')
f.write(raw_str)
f.close()

4、命名空间

详细介绍,猛击这里

from xml.etree import ElementTree as ET

ET.register_namespace('com',"http://www.company.com") #some name

# build a tree structure
root = ET.Element("{http://www.company.com}STUFF")
body = ET.SubElement(root, "{http://www.company.com}MORE_STUFF", attrib={"{http://www.company.com}hhh": "123"})
body.text = "STUFF EVERYWHERE!" # wrap it in an ElementTree instance, and save as XML
tree = ET.ElementTree(root) tree.write("page.xml",
xml_declaration=True,
encoding='utf-8',
method="xml")

命名空间

小哈学Python ----XML的更多相关文章

  1. 小哈学Python第三课-字符集编码

    table.hovertable { font-family: verdana, arial, sans-serif; font-size: 11px; color: #333333; border- ...

  2. 小哈学Python第二课:Hello Word

    Python入门 1.Hello World 2.Hello World

  3. 小哈学Python第四课--运算符

    运算符: 1.算数运算符: 2. 比较运算符 3.赋值运算符 4. 逻辑运算符: 5. 成员运算:

  4. 【Python五篇慢慢弹】快速上手学python

    快速上手学python 作者:白宁超 2016年10月4日19:59:39 摘要:python语言俨然不算新技术,七八年前甚至更早已有很多人研习,只是没有现在流行罢了.之所以当下如此盛行,我想肯定是多 ...

  5. D10——C语言基础学PYTHON

    C语言基础学习PYTHON——基础学习D10 20180906内容纲要: 1.协程 (1)yield (2)greenlet (3)gevent (4)gevent实现单线程下socket多并发 2. ...

  6. 小白学 Python 爬虫(2):前置准备(一)基本类库的安装

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 本篇内容较长,各位同学可以先收藏后再看~~ 在开始讲爬虫之前,还是先把环境搞搞好,工欲善其事必先利其器嘛~~~ 本篇 ...

  7. 小白学 Python 爬虫(6):前置准备(五)爬虫框架的安装

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  8. 小白学 Python 爬虫(9):爬虫基础

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  9. 小白学 Python 爬虫(19):Xpath 基操

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

随机推荐

  1. MyBatis-框架使用和分析

      一.基础知识 MyBatis 是一款优秀的持久层框架,它支持自定义 SQL.存储过程以及高级映射.MyBatis 免除了几乎所有的 JDBC 代码以及设置参数和获取结果集的工作.MyBatis 可 ...

  2. Go语言网络通信---一个简单的UDP编程

    Server端: package main import ( "fmt" "net" ) func main() { //创建udp地址 udpAddr, _ ...

  3. 使用Keil语言的嵌入式C编程教程(下)

    使用Keil语言的嵌入式C编程教程(下) 用8051单片机进行定时器/计数器的计算与编程 延迟是应用软件开发中的重要因素之一.然而,在实现定时延迟的过程中,正常的延迟并不能给出克服这一问题的宝贵结果. ...

  4. IaaS、PaaS 和 SaaS:云服务模型概述

    IaaS.PaaS 和 SaaS:云服务模型概述 为您的组织选择合适的云服务模型,可以帮助您充分利用预算和 IT 资源. 基础设施即服务 (IaaS).平台即服务 (PaaS) 以及软件即服务 (Sa ...

  5. 前台JS遍历Table的所有单元格数据内容

    在日常开发过程中为了减少与后台服务器的交互次数,大部分的功能都会放到前台使用JS来完成. 例如:一个表中有ID(FOCUS_SEQ)和Name(COLUMNCTRL)两个字段,其中ID是自定义连续增长 ...

  6. JVM 的执行子系统

    JVM 的执行子系统. 一.Class类文件结构 1. JVM的平台无关性 与平台无关性是建立在操作系统上,虚拟机厂商提供了许多可以运行在各种不同平台的虚拟机,它们都可以载入和执行字节码,从而实现程序 ...

  7. 【C++】fopen与fopen_s

    说明: VS2010中使用fopen,是没有问题的.使用VS2015时由于VS的高版本对文件操作的安全性有了较高的要求,所以会出现如下情况: fopen用法:  fp = fopen(filename ...

  8. 树莓派写入openwrt作为路由器

    需要:树莓派4B,SD卡一张,SD卡读卡器一枚,openwrt镜像一份. 环境: Linux(deepin 20). 将SD卡插入读卡器,读卡器再插入电脑. 首先查看SD卡: sudo fdisk - ...

  9. Git 高级用法,喜欢就拿去用

    如果你觉得 git 很迷惑人,那么这份小抄正是为你准备的! 请注意我有意跳过了 git commit.git pull/push 之类的基本命令,这份小抄的主题是 git 的一些「高级」用法. 导航 ...

  10. 深入理解JVM,7种垃圾收集器,看完我跪了

    如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现.Java虚拟机规范中对垃圾收集器应该如何实现并没有任何规定,因此不同的厂商.版本的虚拟机所提供的垃圾收集器都可能会有很大差别,并 ...