Solution -「CF 156D」Clues
\(\mathcal{Description}\)
link.
给一个 \(n\) 个点 \(m\) 条边的无向图 \(G\)。设图上有 \(k\) 个连通块,求出添加 \(k-1\) 条边使得这些连通块全部连通的方案数。对给定的 \(p\) 取模。
\(n,m\le10^5\)。
\(\mathcal{Solution}\)
\(\text{Prufer}\) 序列,设第 \(i\) 个连通块(可能是单点)的度数为 \(d_i\),大小为 \(s_i\)。考虑连通块都是单点,方案数为:
\]
即 \(k-2\) 个可重元素的排列数。接下来考虑连通块的大小,每个连通块都可以选出一个点来连边。所以方案数应乘上 \(s_i^{d_i}\)。那么方案数:
\]
枚举 \(t_i=d_i-1\):
\]
发现有一个 \(k\) 元多项式 \(\sum_{i=1}^ks_i\) 的 \(k-2\) 次方,提出来:
\]
显然 \(\sum_{i=1}^ks_i=n\),所以答案:
\]
\(\mathcal{Code}\)
为什么不直接打并查集啊喂。
#include <cstdio>
#include <vector>
const int MAXN = 1e5, MAXM = 1e5;
int n, m, p, ecnt, head[MAXN + 5];
std::vector<int> siz;
bool vis[MAXN + 5];
struct Edge { int to, nxt; } graph[MAXM * 2 + 5];
inline void link ( const int s, const int t ) { graph[++ ecnt] = { t, head[s] }, head[s] = ecnt; }
inline int qkpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
inline int DFS ( const int u ) {
if ( vis[u] ) return 0;
int ret = vis[u] = true;
for ( int i = head[u]; i; i = graph[i].nxt ) ret += DFS ( graph[i].to );
return ret;
}
int main () {
scanf ( "%d %d %d", &n, &m, &p );
if ( p == 1 ) return puts ( "0" ), 0;
for ( int i = 1, u, v; i <= m; ++ i ) {
scanf ( "%d %d", &u, &v );
link ( u, v ), link ( v, u );
}
int ans = 1;
for ( int i = 1, t; i <= n; ++ i ) {
if ( ! vis[i] ) {
siz.push_back ( t = DFS ( i ) );
ans = 1ll * ans * t % p;
}
}
if ( siz.size () == 1 ) return puts ( "1" ), 0;
ans = 1ll * ans * qkpow ( n, siz.size () - 2 ) % p;
printf ( "%d\n", ans );
return 0;
}
Solution -「CF 156D」Clues的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- SQL高级优化(五)之执行计划
一.explain 执行计划:在MySQL中可以通过explain关键字模拟优化器执行SQL语句,从而知道MySQL是如何处理SQL语句的. explain:MySQL执行计划的工具,查看MySQL如 ...
- vue2.0与vue3.0项目创建
脚手架安装与卸载 安装 npm install -g vue-cli //or npm install -g @vue/cli 卸载 npm uninstall -g vue-cli //or npm ...
- 动静分离、Rewirte、HTTPS
目录 Nginx动静分离技术 示例搭建步骤 部署NFS 静态资源共享 部署代理服务器 Rewrite(重点) Rewrite基本概述 rewrite语法 rewrite标记Flag last和brea ...
- Blinn-Phong反射模型实践(web实现)
Blinn-Phong反射模型实践(web实现) games101 第四次作业 最终完成带贴图的 Blinn-Phong 模型,产生光照效果 完成了 不带贴图的 Blinn-Phone 反射模型 带贴 ...
- hisql orm update表数据更新文档
更新 HiSql数据更新 HiSql 提供了好几种数据更新的方式下面一一介绍一下 如果你的表中增加了这四个字段 字段 描述 类型 CreateTime 创建时间 DateTime CreateName ...
- yum安装软件时,出现"No package XXX available"的解决办法
第一种: 依次执行以下命令解决 1,cd /home 2,wget http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noa ...
- Kafka connector (kafka核心API)
前言 Kafka Connect是一个用于将数据流输入和输出Kafka的框架.Confluent平台附带了几个内置connector,可以使用这些connector进行关系数据库或HDFS等常用系统到 ...
- Cesium入门3 - Cesium目录框架结构
Cesium入门3 - Cesium目录框架结构 Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ app目录 下 ...
- 常用字符的ASCII码
字母 ASCII码 十进制数 0 00110000 48 9 00111001 57 A 01000001 ...
- golang中map原理剖析
1. golang中的map有自己的一套实现原理,其核心是由hmap和bmap两个结构体实现的 2. 初始化map package main func main() { // 初始化一个可容纳10个 ...