Solution -「洛谷 P4389」付公主的背包
\(\mathcal{Description}\)
Link.
容量为 \(n\),\(m\) 种物品的无限背包,求凑出每种容量的方案数,对 \(998244353\) 取模。
\(n,m\le10^5\)。
\(\mathcal{Solution}\)
感觉货币系统是这道题的弱化版 qwq。
还有这个博客园对齐公式自动编号的 feature 怎么去掉啊……
对于大小为 \(v\) 的物品,有生成函数:
\]
设物品 \(i\) 的生成函数为 \(G_i(x)\),则需要求:
\]
这个算不动,推一下式子:
\]
\(\ln G(x)\) 拿出来:
\]
拿出积分里面的式子:
\]
积分最后这项:
\]
于是要求:
\]
先把 \(\exp\) 内的式子写出来——枚举 \(v\) 的值域,计算 \(v_i=v\) 时的贡献,最后 \(\exp\) 一下就好啦。
复杂度 \(\mathcal O(n+m\log m)\)。
\(\mathcal{Code}\)
#include <cmath>
#include <cstdio>
typedef long long LL;
const int MAXN = 1 << 18, MOD = 998244353;
int n, m, inv[MAXN + 5], buc[MAXN + 5], F[MAXN + 5], G[MAXN + 5];
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int mul ( LL a, const int b ) { return ( a *= b ) < MOD ? a : a % MOD; }
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
inline int qkpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = mul ( a, a ), b >>= 1 ) ret = mul ( ret, b & 1 ? a : 1 );
return ret;
}
namespace Poly {
const int G = 3;
inline int adjust ( const int n ) {
int ret = 0;
for ( int l = 1; l < n; l <<= 1, ++ ret );
return ret;
}
inline void NTT ( const int n, int* A, const int tp ) {
static int lstn = -1, rev[MAXN + 5] {};
if ( lstn ^ n ) {
int lgn = log ( n ) / log ( 2 ) + 0.5;
for ( int i = 0; i < n; ++ i ) rev[i] = ( rev[i >> 1] >> 1 ) | ( ( i & 1 ) << lgn >> 1 );
lstn = n;
}
for ( int i = 0; i < n; ++ i ) if ( i < rev[i] ) A[i] ^= A[rev[i]] ^= A[i] ^= A[rev[i]];
for ( int i = 2, stp = 1; i <= n; i <<= 1, stp <<= 1 ) {
int w = qkpow ( G, ( MOD - 1 ) / i );
if ( ! ~ tp ) w = qkpow ( w, MOD - 2 );
for ( int j = 0; j < n; j += i ) {
for ( int k = j, r = 1; k < j + stp; ++ k, r = mul ( r, w ) ) {
int ev = A[k], ov = mul ( r, A[k + stp] );
A[k] = add ( ev, ov ), A[k + stp] = sub ( ev, ov );
}
}
}
if ( ! ~ tp ) for ( int i = 0; i < n; ++ i ) A[i] = mul ( A[i], inv[n] );
}
inline void polyDer ( const int n, const int* A, int* R ) {
for ( int i = 1; i < n; ++ i ) R[i - 1] = mul ( i, A[i] );
R[n - 1] = 0;
}
inline void polyInt ( const int n, const int* A, int* R ) {
for ( int i = n - 1; ~ i; -- i ) R[i + 1] = mul ( inv[i + 1], A[i] );
R[0] = 0;
}
inline void polyInv ( const int n, const int* A, int* R ) {
static int tmp[MAXN + 5] {};
if ( n == 1 ) return void ( R[0] = qkpow ( A[0], MOD - 2 ) );
int len = 1 << adjust ( n << 1 );
polyInv ( n + 1 >> 1, A, R );
for ( int i = 0; i < n; ++ i ) tmp[i] = A[i];
NTT ( len, tmp, 1 ), NTT ( len, R, 1 );
for ( int i = 0; i < len; ++ i ) R[i] = mul ( sub ( 2, mul ( tmp[i], R[i] ) ), R[i] ), tmp[i] = 0;
NTT ( len, R, -1 );
for ( int i = n; i < len; ++ i ) R[i] = 0;
}
inline void polyLn ( const int n, const int* A, int* R ) {
static int tmp[2][MAXN + 5] {};
int len = 1 << adjust ( n << 1 );
polyDer ( n, A, tmp[0] ), polyInv ( n, A, tmp[1] );
NTT ( len, tmp[0], 1 ), NTT ( len, tmp[1], 1 );
for ( int i = 0; i < len; ++ i ) tmp[0][i] = mul ( tmp[0][i], tmp[1][i] );
NTT ( len, tmp[0], -1 ), polyInt ( n, tmp[0], R );
for ( int i = 0; i < len; ++ i ) tmp[0][i] = tmp[1][i] = 0;
for ( int i = n; i < len; ++ i ) R[i] = 0;
}
inline void polyExp ( const int n, const int* A, int* R ) {
static int tmp[MAXN + 5] {};
if ( n == 1 ) return void ( R[0] = 1 );
int len = 1 << adjust ( n << 1 );
polyExp ( n + 1 >> 1, A, R ), polyLn ( n, R, tmp );
tmp[0] = sub ( A[0] + 1, tmp[0] );
for ( int i = 1; i < n; ++ i ) tmp[i] = sub ( A[i], tmp[i] );
NTT ( len, tmp, 1 ), NTT ( len, R, 1 );
for ( int i = 0; i < len; ++ i ) R[i] = mul ( R[i], tmp[i] ), tmp[i] = 0;
NTT ( len, R, -1 );
for ( int i = n; i < len; ++ i ) R[i] = 0;
}
} // namespace Poly.
int main () {
inv[1] = 1;
for ( int i = 2; i <= MAXN; ++ i ) inv[i] = mul ( MOD - MOD / i, inv[MOD % i] );
n = rint (), m = rint ();
for ( int i = 1; i <= n; ++ i ) ++ buc[rint ()];
for ( int i = 1; i <= m; ++ i ) {
if ( ! buc[i] ) continue;
for ( int j = 1, lim = m / i, t; j <= lim; ++ j ) {
t = i * j;
F[t] = add ( F[t], mul ( inv[j], buc[i] ) );
}
buc[i] = 0;
}
Poly::polyExp ( m + 1, F, G );
for ( int i = 1; i <= m; ++ i ) printf ( "%d\n", G[i] );
return 0;
}
Solution -「洛谷 P4389」付公主的背包的更多相关文章
- Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...
- Note/Solution -「洛谷 P5158」「模板」多项式快速插值
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...
- Solution -「洛谷 P4198」楼房重建
\(\mathcal{Description}\) Link. 给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...
- Solution -「洛谷 P6577」「模板」二分图最大权完美匹配
\(\mathcal{Description}\) Link. 给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...
- Solution -「洛谷 P6021」洪水
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...
- Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集. \(n,m\le10^5 ...
- Solution -「洛谷 P5236」「模板」静态仙人掌
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路. \(n,q\le10^4\),\(m\ ...
- Solution -「洛谷 P4320」道路相遇
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...
- Solution -「洛谷 P5827」边双连通图计数
\(\mathcal{Description}\) link. 求包含 \(n\) 个点的边双连通图的个数. \(n\le10^5\). \(\mathcal{Solution}\) ...
随机推荐
- win10 配置maven
1.官网下载后,解压到需要的文件夹 2.进入文件夹,获取根目录的路径 3.配置环境变量 两个都要 M2_HOME MAVEN_HOME 3.配置path ,以相对路径的方式配置bin目录 4.测试是否 ...
- nefu120梅森素数
#include<iostream> #include<cstdio> using namespace std; typedef long long ll; const int ...
- 深度学习之BP算法
1.介绍 人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是在现代生物学研究人脑组织所取得成果的基础上提出来的.人工神经网络是大脑生物结构的数学建模,有 ...
- CTF-sql-万能密码
以下是我在学习sql注入时的一些感想分享,希望能帮助到大家,如有错误,望指出. 万能密码的种类: ①select * from admin where username ="" a ...
- leetcode 83. 删除排序链表中的重复元素 及 82. 删除排序链表中的重复元素 II
83. 删除排序链表中的重复元素 问题描述 给定一个排序链表,删除所有重复的元素,使得每个元素只出现一次. 示例 1: 输入: 1->1->2 输出: 1->2 示例 2: 输入: ...
- [STM32F4xx 学习] SPI与nRF24L01+的应用
前面已经总结过STM32Fxx的特点和传输过程,下面以nRF24L01+ 2.4GHz无线收发器为例,来说明如何使用SPI. 一.nRF24L01+ 2.4GHz无线收发器的介绍 1. 主要特性 全球 ...
- visual studio进行机器学习与python编写
visual studio里的python安装之后自带一个虚拟环境 1.anaconda有些包版本无法到最新. 2.包管理器在安装卸载,强制停止后,包管理器会出问题,一直卸不掉那个包. 在卸载pyth ...
- Cesium中文网——如何开发一款地图下载工具[一]
Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ Cesium中文网的朋友们的其中一个主题是:自己独立开发一款地图 ...
- 网络支持IPV6地址测试校验与思考
概述 大背景:随着移动端的快速扩张,互联网的规模越来越广阔,早于2011年耗尽的IPV4地址越来越无法满足互联网的网络地址需求,IPV6地址推广进入快车道.实际情况:近期公司应上级部门邀请对公司的主域 ...
- java继承子类实例化过程(细节解释)
1 package face_08; 2 class Fu{ 3 Fu(){ 4 super(); 5 show(); 6 return; 7 } 8 void show() { 9 System.o ...