Solution -「CF 1372E」Omkar and Last Floor
\(\mathcal{Description}\)
Link.
给定一个 \(n \times m\) 的矩阵,每行被划分为若干段,你可以钦定每段中恰好一个位置为 \(1\),其余位置为 \(0\)。设 \(c_i\) 为第 \(i\) 列 \(1\) 的个数,最大化 \(\sum_{i=1}^{m} c_i^2\)。
\(n,m\le100\)。
\(\mathcal{Solution}\)
区间 DP,不过状态设计比较巧妙:令 \(f(l,r)\) 表示确定在 \([l,r]\) 区间内的所有段的最大和。记 \(c_{l,r,k}\) 表示在区间 \([l,r]\) 内,包含了第 \(k\) 列的段的个数,转移:
\]
复杂度 \(\mathcal O(n^4)\)(求转移时在线求 \(c_{l,r,k}\))。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
const int MAXN = 100;
int n, m, f[MAXN + 5][MAXN + 5], L[MAXN + 5][MAXN + 5], R[MAXN + 5][MAXN + 5];
inline void chkmax ( int& a, const int b ) { a < b ? a = b : 0; }
int main () {
scanf ( "%d %d", &n, &m );
for ( int i = 1, k; i <= n; ++ i ) {
scanf ( "%d", &k );
for ( int j = 1, l = 1, r; j <= k; ++ j, l = r + 1 ) {
scanf ( "%*d %d", &r );
for ( int h = l; h <= r; ++ h ) L[h][i] = l, R[h][i] = r;
}
}
for ( int len = 1; len <= m; ++ len ) {
for ( int l = 1, r; ( r = l + len - 1 ) <= m; ++ l ) {
int& cur = f[l][r] = -1;
for ( int k = l; k <= r; ++ k ) {
int c = 0;
for ( int h = 1; h <= n; ++ h ) c += l <= L[k][h] && R[k][h] <= r;
chkmax ( cur, f[l][k - 1] + f[k + 1][r] + c * c );
}
}
}
printf ( "%d\n", f[1][m] );
return 0;
}
Solution -「CF 1372E」Omkar and Last Floor的更多相关文章
- Solution -「CF 1392G」Omkar and Pies
\(\mathcal{Description}\) Link. 给定两个长度为 \(K\) 的 \(01\) 串 \(S,T\) 和 \(n\) 组操作 \((a_i,b_i)\),意义为交换 ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
随机推荐
- c# - 关于位移符号 >> 和 << 的使用
1.前言 这是对二进制数据进行位移的方法 2.操作 using System; namespace ConsoleApp1.toValue { public class test1 { public ...
- react中create-react-app配置antd按需加载(方法二)
1.yarn add babel-plugin-import 2.在根目录下的package.json下的bable中添加相应代码 "babel": { "presets ...
- StringBuffer和String的区别
面试题:String为什么不可变 StringBuffer和StringBuilder的区别 String 和StringBuffer的区别: (一):String 类中的byte数组使用final修 ...
- if结构题目记录
1.使用if结构实现:若年龄够7岁或者年龄够5岁并且性别为男,就可以搬动桌子 import java.util.Scanner; /** * 使用if结构实现:若年龄够7岁或者年龄够5岁并且性别为男, ...
- nginx代理图片上传以及访问 nginx 图片上传完整版
nginx代理图片上传 首先需要利用nginx代理图片访问参考 https://www.cnblogs.com/TJ21/p/12609017.html 编写接受文件的controller 1 @Po ...
- 软件开发架构与网络之OSI七层协议(五层)
本期内容概要 python回顾 软件开发架构 网络理论前瞻 osi七层协议(五层) 以太网协议 IP协议 port协议 交换机 路由器 局域网 广域网 TCP协议 三次握手 四次挥手 UDP协议 内容 ...
- Keil MDK STM32系列(八) STM32F4基于HAL的PWM和定时器输出音频
Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...
- Web开发之Servlet
当一个请求到达服务端,服务器怎么处理? 当一个请求到达服务端时,由服务端的引擎来进行分析.它根据工程名找到工程, 然后拿到URL的资源地址和web.XML文件的所有的进行对比,和哪一个对比上就找到了具 ...
- C++ 从&到&&
人类发展史,就是不断挖坑.填坑的过程. 语言发展史也是如此! 任何一门设计合理的语言,给你的限制或提供的什么特性,都不是没有代价的. C的指针 指针:pointer 指针的思想起源于汇编.指针思想是编 ...
- HBase结构
Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据 Hive,可以使用类似SQL语言来访问HBase,最终本质是编译成MapReduce Job来处理HBase表数据,适合做数 ...