简介

Python语言中只定义了特定数据类的一种类型(比如只有一种整数类型,一种浮点类型等)。在不需要关注计算机中数据表示方式的普通应用程序中,这样做很方便。但是,对于科学计算来说,我们需要更加精确的控制类型。

在NumPy中,引入了24种新的Python scalar类型用于更加准确的描述数据。这些类型都是可以直接在NumPy中的数组中使用的,所以也叫Array scalar类型。

本文将会详细讲解这24种scalar类型。

scalar类型的层次结构

先看一个张图,看下scalar类型的层次结构:

上面实线方框括起来的,就是scalar类型。 这些标量类型,都可以通过 np.type来访问,比如:

In [130]: np.intc
Out[130]: numpy.int32

细心的小伙伴可能要问了,这不对呀,实线方框括起来的只有22中类型,还有两个类型是什么?

还有两个是代表整数指针的 intpuintp

注意,array scalars 类型是不可变的。

我们可以isinstance来对这些数组标量来进行层次结构的检测。

例如,如果val是数组标量对象,则isinstance(val,np.generic)将返回True。如果val是复数值类型,则isinstance(val,np.complexfloating)将返回True。

内置Scalar类型

我们用下面的表来展示内置的Scalar类型和与他们相对应的C类型或者Python类型。最后一列的字符代码是类型的字符表示,在有些情况比如构建dtype中会使用到。

boolean

类型 描述 字符代码
bool_ compatible: Python bool '?'
bool8 8 bits

Integers

类型 描述 字符代码
byte compatible: C char 'b'
short compatible: C short 'h'
intc compatible: C int 'i'
int_ compatible: Python int 'l'
longlong compatible: C long long 'q'
intp large enough to fit a pointer 'p'
int8 8 bits
int16 16 bits
int32 32 bits
int64 64 bits

Unsigned integers

类型 描述 字符代码
ubyte compatible: C unsigned char 'B'
ushort compatible: C unsigned short 'H'
uintc compatible: C unsigned int 'I'
uint compatible: Python int 'L'
ulonglong compatible: C long long 'Q'
uintp large enough to fit a pointer 'P'
uint8 8 bits
uint16 16 bits
uint32 32 bits
uint64 64 bits

Floating-point numbers

类型 描述 字符代码
half 'e'
single compatible: C float 'f'
double compatible: C double
float_ compatible: Python float 'd'
longfloat compatible: C long float 'g'
float16 16 bits
float32 32 bits
float64 64 bits
float96 96 bits, platform?
float128 128 bits, platform?

Complex floating-point numbers

类型 描述 字符代码
csingle 'F'
complex_ compatible: Python complex 'D'
clongfloat 'G'
complex64 two 32-bit floats
complex128 two 64-bit floats
complex192 two 96-bit floats, platform?
complex256 two 128-bit floats, platform?

Python 对象

类型 描述 字符代码
object_ any Python object 'O'

对于数组中的对象类型object_来说,存储的数据其实是Python对象的引用,所以说他们的对象类型必须一致。

虽然存储的是引用,但是在取值访问的时候,返回的就是对象本身。

可以看到对于数字类型来说,int,uint,float,complex,后面可以跟上具体的数组,表示特定的长度。

intpuintp 是两个指向整数的指针。

有些类型和Python自带的类型基本上是等价的,事实上这些类型就是继承自Python自带的类型:

Array scalar type Related Python type
int_ IntType (Python 2 only)
float_ FloatType
complex_ ComplexType
bytes_ BytesType
unicode_ UnicodeType

有一个特例就是bool_ ,它和Python的 BooleanType 非常类似,但并不是继承自BooleanType。因为Python的BooleanType 是不允许被继承的。并且两者底层的数据存储长度也是不一样的。

虽然在Python中bool是int的子类。但是在NumPy中 bool_ 并不是 int_ 的子类,bool_ 甚至不是一个number 类型。

在Python 3 中, int_ 不再继承 Python3 中的int了,因为int不再是一个固定长度的整数。

NumPy 默认的数据类型是 float_

可变长度数据类型

下面的三种数据类型长度是可变的,

类型 描述 字符代码
bytes_ compatible: Python bytes 'S#'
unicode_ compatible: Python unicode/str 'U#'
void 'V#'

字符代码中的 # 表示的是数字。

上面描述的字符代码,为了和Python的其他模块进行兼容,比如struct ,需要进行下面适当的修正:

c -> S1, b -> B, 1 -> b, s -> h, w -> H, 和 u -> I.


本文已收录于 http://www.flydean.com/03-python-numpy-scalar/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

NumPy之:标量scalars的更多相关文章

  1. tensorflow-笔记02

    TensorFlow扩展功能 自动求导.子图的执行.计算图控制流.队列/容器 1.TensorFlow自动求导 在深度学习乃至机器学习中,计算损失函数的梯度是最基本的需求,因此TensorFlow也原 ...

  2. 【深度学习系列】PaddlePaddle可视化之VisualDL

    上篇文章我们讲了如何对模型进行可视化,用的keras手动绘图输出CNN训练的中途结果,本篇文章将讲述如何用PaddlePaddle新开源的VisualDL来进行可视化.在讲VisualDL之前,我们先 ...

  3. TensorFlow TensorBoard使用

    摘要: 1.代码例子 2.主要功能内容: 1.代码例子 <TensorFlow实战>使用MLP处理Mnist数据集并TensorBoard上显示 2.主要功能 执行TensorBoard程 ...

  4. 学习笔记TF039:TensorBoard

    首先向大家和<TensorFlow实战>的作者说句不好意思.我现在看的书是<TensorFlow实战>.但从TF024开始,我在学习笔记的参考资料里一直写的是<Tenso ...

  5. Tensorboard简介

    Tensorflow官方推出了可视化工具Tensorboard,可以帮助我们实现以上功能,它可以将模型训练过程中的各种数据汇总起来存在自定义的路径与日志文件中,然后在指定的web端可视化地展现这些信息 ...

  6. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

  7. numpy_basic3

    矩陣 矩阵是numpy.matrix类类型的对象,该类继承自numpy.ndarray,任何针对多维数组的操作,对矩阵同样有效,但是作为子类矩阵又结合其自身的特点,做了必要的扩充,比如:乘法计算.求逆 ...

  8. TensorBoard:可视化学习

    数据序列化 TensorBoard 通过读取 TensorFlow 的事件文件来运行.TensorFlow 的事件文件包括了你会在 TensorFlow 运行中涉及到的主要数据.下面是 TensorB ...

  9. Python与线性代数基本概念

    在Python中使用Numpy创建向量: x = np.array([1, 2, 3, 4]) 创建3 x 3矩阵 B = np.array([[1, 2],[3, 4],[5, 6]]) Shape ...

随机推荐

  1. 字符串拼接出现null的问题

    最近在开发的过程中遇到这样的问题,原因是在做一个需求的时候,要求将解密的号码和前缀进行拼接.一开始在这个拼接的过程中,没有考虑到数据校验的问题,因为有可能他的前缀或者其他需要拼接的字段在前端传递的过程 ...

  2. oracle ORA-00257

    su - oracle sqlplus /nolog conn / as sysdba select * from v$flash_recovery_area_usage; select sum(pe ...

  3. 注册 Amazon Web Services(AWS) 账号,助园一臂之力

    感谢大家去年的大力支持,今年园子继续和 Amazon Web Services(AWS) 合作,只要您通过 博客园专属链接 注册一个账号(建议使用手机4G网络注册),亚马逊就会给园子收入,期待您的支持 ...

  4. 心脏滴血(CVE-2014-0160)检测与防御

    用Nmap检测 nmap -sV --script=ssl-heartbleed [your ip] -p 443 有心脏滴血漏洞的报告: ➜ ~ nmap -sV --script=ssl-hear ...

  5. 快速电路仿真器(FastSPICE)中的高性能矩阵向量运算实现

    今年10-11月份参加了EDA2020(第二届)集成电路EDA设计精英挑战赛,通过了初赛,并参加了总决赛,最后拿了一个三等奖,虽然成绩不是很好,但是想把自己做的分享一下,我所做的题目是概伦电子出的F题 ...

  6. 微信小程序左滑删除

    <view class="touch-item {{item.isTouchMove ? 'touch-move-active' : ''}}" data-index=&qu ...

  7. POJ-2240(floyd算法简单应用)

    Arbitrage poj-2240 #include<iostream> #include<cstdio> #include<cstring> #include& ...

  8. Mybatis系列全解(三):Mybatis简单CRUD使用介绍

    封面:洛小汐 作者:潘潘 在理解中执行,在执行中理解,学习技术也循此道. 前言 上一篇文章 <Mybatis系列全解(二):Mybatis简介与环境搭建> ,我们对 Mybatis 做了初 ...

  9. 2020年12月-第02阶段-前端基础-CSS Day04

    1. 浮动(float) 记忆 能够说出 CSS 的布局的三种机制 理解 能够说出普通流在布局中的特点 能够说出我们为什么用浮动 能够说出我们为什么要清除浮动 应用 能够利用浮动完成导航栏案例 能够清 ...

  10. rest framework parsers

    解析器 机交互的Web服务更倾向于使用结构化的格式比发送数据格式编码的,因为他们发送比简单的形式更复杂的数据 -马尔科姆Tredinnick,Django开发组 REST框架包含许多内置的解析器类,允 ...